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SUMMARY

The Washington Department of Wildlife manages approximately 5.9%
of the state’s lowland lakes throughout the state according to
public desires, recreational demands habitat considerations and

previous management efforts. Although surveys have shown that
trout are the most popular of the state’s game fish, some lakes are
managed to improve populations of bass, bluegill or crappie. 1In

response to these needs WDW proposes the elimination of non-game or
competitor species in a portion of these lakes to allow stocking
and optimal populations of trout fingerlings and selected warmwater
species. The overall objective of the program is to improve public
fishing opportunities.

- Alternative Methods:

In Table A the alternative methods are broken into groups; Fish
Toxicants, Predator/Competitor, Mechanical and No Action. The
methods included in these groups are explained below.

Fish Toxicants:

Rotenone . Rotenone is widely regarded as the safest and least
persistent of the poisons.

Other poisons . The list of poisons used to kill undesired fish in
1akes and ponds ‘is huge (Lennon et al., 1970; Eschmeyer, 1975).
Currently only the Streptomyces derived antibiotic antimycin
(marketed as Fintrol) is registered for use as a general fish
toxicant with the EPA (Cumming, 1975). '

Baits . Baits have been used with limited success, either as an
attractant to draw fish to a secluded area of the lake to be
eliminated by other means or as a coating for calcium carbide
pellets that would produce acetylene gas and float the fish after
the ‘bait had been digested.

Predator/Competitor

Predator stocking . Actual experiments with predator stocking as a
fish-control technique are scarce, and success has been limited
(Dunst, et al., 1974). Both northern pike and largemouth bass
failed to control bluegills in Michigan (Shapiro, et al., 1975) and
in California (State of California, 1983). California’s efforts to
control carp, suckers, and squawfish with predators have failed
although striped bass reduced shad and bluegills in some reservoirs
(State of California, 1983). Since large apex predators would also
eat trout fry, this is not an option in most Washington state
waters.




Mechanical

Water level drawdowﬂ . Completely draining a pond or reservoir is
the most foolproof way to destroy all the fish in it (Prevost,
1960); where pockets of water remain, they can be easily and

thoroughly poisoned, netted or electroshocked (Barry, 1967).
Partial drawdowns that expose carp spawning beds have also been
reasonably successful (Sprague, 1961). In Washington State,
however, few of the program lakes have water level control
facilities.

Lakewide netting and trapping . There are no published accounts of
lakewide netting programs that have been successful. Most lakewide
attempts using commercial fishermen have failed because they are
not cost-effective and are extremely labor intensive.

Dams and barriers . Barriers are used to block migrating fish from
their spawning streams. This method has little practical value in
Washington where the important target species (carp, perch, and
sunfish) are lake spawnhers. :

Electrofishing . Electrofishing on a lakewide basis has never been
successful as a control measure and, like netting, is very labor
intensive. :

Removing congregations of spawning fish . There are several
accounts of success with this method, whereby  adult fish are
allowed to congregate in spawning areas which ‘are subsequently
blocked off 1in most cases. The fish are then poisoned,
electroshocked or netted. To actually eliminate a nuisance fish
population, this technique would have to be repeated yearly, -at
least until all year-classes had reached spawning size.




Table A - Comparative Impacts Matrix, by element of the
' environment.

Method

Fish Toxicants

Predator/Competitor

Mechanical

Air
Fish Toxicants

Mechanical

Surface Water
Fish Toxicants
Mechanical

Predator/Competitor

Rate and distribution
of lake soil sediment
may be altered with
changes in species

abundance and diversity

Change in sediment

transport through/around

"dams or barriers

Changes in plant/benthic

from drawdown

Adverse odors may be
present while fish
killed decompose

Changes in bacteria
levels and turbidity,
change or elimination
of phyto/zoo-plankton,
benthic fauna, fish
species and diversity,
algae blooms, change
to water taste and
odor.

Algae blooms.

Extended fishing
season to increase
opportunity to
harvest fish prior
to rehabilitation

Lakes can recover
from algae blooms,
loss of phyto/zoo-
plankton, benthic
fauna and changes
to taste and odor
in two to twelve
months.



Table A. continued.

Method

Significant Impacts Mitigation Measures

Mitigation measures
include actions to
restrict the use of
rotenone to targeted
waters only, and to
include potassium
permanganate dip
stations and temp-
orary sand bag dams

Lakes would be re-
stocked with
desired species.

Terrestrial Resources

Fish Toxicants
Predator/Competitor

Mechanical

Environmental health
Fish toxicants
Predator/Competitor

Mechanical

Treatments are timed
to produce the desired
rehabilitation with
the least impact to

other species

Larval amphibians and
some adults may be
killed. Adult amphib-
ians or reptiles may
be temporarily affect-
ed by loss of aquatic
fish food source.

Birds or mammals which
depend on fish/benthic
organisms for food may
be temporarily impacted

Humans in direct
contact with the powder
rotenone may experience
temporary skin, eye or
mucous membrane '
irritation.

Protective clothing

Tre rotenone label
precludes the con-
sumption of
rotenoned fish as
food or feed.

Disposal of fish or
prevention of use.



Table A. continued.

Method Significant Impacts Mitigation Measures
Increases in human Monitbring,
activities as a education and
result of increased . enforcement.

fishing pressure may
cause erosion, air,
water and noise
pollution, trampling

of vegetation, and

other impacts to .
recreational, religious,
or scientific use of

the area.
Aesthetics
Fish toxicants Water will be brown Water will fecover
- in color following in a few hours to a
Mechanical treatment with rotenone few days.

or disturbance by
mechanical means.

Floating or beached Disposal or
fish education.



DESCRIPTION OF THE PROPOSED ACTION:

Type of Action

The proposed action is to continue the Washington Department of
Wildlife’s rehabilitation of selected 1lakes and streams by
eliminating undesired fish species using rotenone followed by
restocking with a preferred fish species, to improve public
fishing. Lake and stream rehabilitations occur throughout the
state. Almost all treatments have occurred in lakes and ponds,
with only occasional stream or slough treatments.

In the last 20 years approximately 5.9% of the state’s lowland
lakes have been treated with rotenone. This equals about 3.4% of
the state’s total standing water acreage below 2500 feet in
elevation. The average per year has been 0.3% of total surface
acreage of the state’s lowland lakes. '

Justification
Fisheries Management

To satisfy the annual demand for productive gamefish fishing by
over 600,000 anglers, Washington Department of Wildlife stocks
selected waters with trout from hatcheries and transplanted bass,
crappie, walleye, and additional warmwater fish species from other
waters. Many waters are managed for specific fisheries, such as
trout only or warmwater species. The management emphasis for state
waters is decided according to habitat parameters, public desires,
.recreational demands, and previous management efforts.
Occasionally, these waters become overpopulated with fish species
outside this management emphasis. This often results in increased
predation and/or competition, hence poor growth and survival, of
‘targeted game fish. If carp overpopulate, fish survival decreases
and nesting bird habitat is degraded due to siltation and uprooting
of emergent vegetation. Infestations of these fish species occur
through migration from other waters or through illegal transport
and introductions. Three management options are available if this
happens:

1) Take no action;
2) Change the management emphasis for the water;
3) Eliminate competing species and stock with desired

gamefish species.

Option 1 will result in an increase in numbers of fish outside the
management emphasis to a point where the water no longer supports
a viable gamefish fishery. »



Option 2 allows for a viable fishery, but is relatively costly.
For example, to establish a trout fishery, the cost of producing a
fingerling trout in a state hatchery is about 4% of the cost of a
legal-sized trout (Washington Department of Wildlife, 1983). Even
though fry survival is lower when compared to legals, they can
still be more economical in some cases (see below). Furthermore,
legal-sized trout are considered a lower quality fish than
naturally-reared fry-origin trout, and are usually smaller as well.

Option 3 is the only alternative that allows the lake to continue

to provide a viable fishery. Rotenone is the method currently
used by WDW to eliminate fish in lakes and is far more economical
than either options 1 or 2 above. Washington Department of

Wildlife (1984) compared the costs of three different management
strategies for a typical lowland trout lake in western Washington
(Lake Erie, Skagit County).

These options were:

1) trout-only lake maintained by fry stocking and periodic
rotenone treatment;

2) mixed-species lake maintained by trout fry stocking (no
rotenone); and

3) mixed species lake maintained by legal-sized trout stocking
(no rotenone).

The cost of Option 1 was about one-third the cost of either Option
2 or 3. Also note that Option 2 is not likely to be a viable
alternative in many lakes for the reasons already discussed.

Wildlife Management

Lakes are also rehabilitated by the Department of Wildlife to
improve the quality of waterfowl habitat. The primary objective is
to remove carp from potentially productive nesting and rearing duck
habitat to increase the amount of food (aquatic invertebrates) and
vegetative cover. Candidate waters are primarily one to three feet
deep. :

Pre~Treatment Procedures

A lake or stream is selected for rotenone treatment when a viable
fishery can only be provided with introductions of legal-sized
fish. These determinations are made by the WDW Area Fisheries
Biologist directly charged with managing the lake’s gamefish.
Standard indicators of fishery performance are the average catch
per hour on opening day, and fish size and abundance from annual
pre~season gillnet sets. When poor performance is coupled with
gillnet and/or electroshocking data showing and increase in species



outside the managment emphasis, the Area Biologist may recommend
treatment to his Regional Biologist.

A Pre-Rehabilitation Plan . (See Appendix A) containing vital
information on the proposed treatment must be completed by the
biologist.

In calculating the dosage of rotenone needed, the biologist
considers a variety of. physical and biological factors, the most
important being target species, water chemistry, past successes or
failures in the lake and presence of weedy shorelines.

Dosage is initially calculated based on powder or liquid containing
5% rotenone, and is expressed as parts of powder or liquid - not
pure rotenone itself - per million parts of lake water (ppm) on a
weighted basis. One ppm is equivalent to one milligram per liter

(1 mg/1).

The powders used by WDW rarely contain only 5% rotenone. WDW
receives most of its rotenone dust from Peruvian suppliers, and
shipments are chemically assayed by batch for rotenone content.
Powders used from 1977 through 1984 ranged from 6.6% rotenone to

8.1% rotenone. Liquid preparations consistently contain 5%
rotenone. When these formulations are received and the exact

assay known, biologists adjust the amount of powder used to conform
to the initial calculation based on 5% powders.

The actual amount of rotenone needed is based on the estimated
weight of water in the lake. This 1is determined by volumetric
calculations using WDW surveys on the particular lake.

The Regional Fisheries Program Manager presents his 1list of
proposed treatments along with justifications for each water to the
Fisheries Management Division of WDW. Approval at this stage may
depend not only on the validity of the biological justifications,
but on other considerations such as the lake’s public use and its
importance as a recreational fishery, and the availability of
rotenone itself. Statewide priorities are established, and a list
of candidate lakes drawn up.

After developing a list of candidate lakes, the public is notified
through a general news release, usually in late spring. Area
Biologists also solicit public opinion from lakeshore residents and
other groups 1n the area. Public meetlngs are held in the vicinity
of the waters proposed for treatment prior to a final decision.

At its annual August public hearing, the Washington State Wildlife
Commission - a group of private citizens chosen by the Governor to
oversee WDW - is presented with the list of candidate lakes. The
Commission approve or denies treatment on individual lakes at its
annual August meeting. Even after a lake has be=n approved by the
Commission, WDW may opt not to treat that lake.

8
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Treatment Procedures

Shortly before treatment, the lake is divided into sections of
similar volumes, and these sections are marked using buoys and
shoreline markers.

On the day slated for treatment, each section of the lake is
assigned to a WDW employee. Rotenone is applied by towing burlap
sacks of commercial dust behind a boat, the outboard prop wash
helping to diffuse the poison. Shoreline and marshy areas are
often sprayed with liguid rotenone by motorized pump or are dusted
by hand. Aerial applications are sometimes made. Common dosages
of rotenone (5%) in lakes treated in Washington range between

1-4 ppm.

Fishing regulations are 1liberalized when possible, and upon
approval by the Wildlife Commission, to utilize fish in waters
scheduled for rehabilitation. Warmwater game fish, usually mature
bass, are collected (depending on need) prior to rehabilitation, to
be utilized as broodstock for waters nearby which are managed for
warmwater fisheries. On some lakes, bass that have floated to the
surface have been netted by WDW employees and bass club volunteers,
revived by dipping the fish in potassium permanganate, and moved to
mixed-species or spiny ray lakes to augment or start a population
(Fletcher, 1976). WDW has typically transplanted 200-300 fish from
a single lake during this type of procedure. The use of potassium
permanganate also requires a short-term water modification (permit)
to the water quality standards issued by the Washington Department
of Ecology.

Post-Treatment Procedures

In lakes with a stream outlet, runoff from the lake must be

controlled or detoxified. In some cases, the runoff is small
enough that it can be dammed off (using sandbags, for example)
until the rotenone is naturally degraded. When this 1is not

possible, and oxidizing agent - usually potassium permanganate - is
dripped into the outlet stream to detoxify the rotenone before it
can harm fish and invertebrates downstream. Between 1977 and 1984
such detoxification was necessary in only 16% of the lakes treated.
Pfeifer (1985) provides a detailed account of outlet detoxification
procedures, including dosage/detoxification curves and case
histories in Martha and Silver Lakes (Snohomish County).

In the lake itself, rotenone degrades naturally over time. At
intervals following treatment, WDW Area Biologists usually perform
a simple bioassay to determine how long the lake remains toxic to
fish: hatchery rainbow trout are commonly suspended in the water
column in wire cages and when these fish survive 1-6 days in the
lake, it is considered nontoxic.



The biologist submits a Post~Rehabilitation Form (see Appendix A)
for each treated water; it describes, among other things, the
possibility of a complete kill, water conditions at the time of
treatment, and any detoxification measures taken.

Fish are restocked the following spring. During the post-treatment
vears, the Area Biologist continues to monitor fish survival and
growth, as well as catch rates for the water.

Number and size of Waters Treated

The fist rotenone treatment in Washington State took place in
September, 1940 on King Lake (Pend Oreille County). Since that
time 473 state waters have been treated at least once. The
chlorinated hydrocarbon insecticide toxaphene was occasionally used
instead of rotenone; its use was discontinued in the late 1960’s,
and since then, rotenone has been the only fish poison applied in
Washington State. : : '

Almost all treatments have occurred in lakes and ponds, with only
occasional stream or slough treatments. Waters treated since 1940
represent [5.72%] of the total surface acreage of all lakes below
2,500 feet elevation in the state.

‘Ffequencv of Rotenone Treatments

Rotenone rarely if ever kills all the fish in a lake. Problem

species often repopulate the lake naturally over the course of
time. In addition, problem species are often reintroduced

illegally by anglers or lakeside residents.. These may be the same
species that originally degraded the targeted fishery, or new ones.
The net result of any of these cases 1s the same: fish production
will eventually decline, and the lake may have to be rehabilitated
again.

Of 473 Washington State lakes that have been treated, 240 (55%)
have been treated more than once. The average length of time
between treatments has been 7.74 years (n = 522 intervals, s = 4.49
vears) . ' : ‘ :

Target Species

In the eastern half of the state pumpkinseed sunfish was most
frequently targeted for elimination, in.the western half of the

state yellow perch was most frequently targeted. Other important
target species statewide include carp, crappile, brown bullhead
(catfish), and largemouth bass. All are introduced, non-native
species.
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A particular lake may experience recurring problems with the same
target species over the course of many years. Often, however, the
target species on frequently-rotenoned 1lakes changes over the
years. This is often the case in "urban" lakes which are frequent
targets for illegal fish introductions.

Timing of Rotenone Treatments

Seventy-eight percent of rotenone treatments in the state have
taken place in the fall, mostly in September and October. Only 22%
have been spring treatments, and these occurred mostly in March.
All spring treatments were on eastern Washington lakes.

Rotenone is usually applied in the fall because water levels are
low, aquatic vegetation is sparse, recreational use of the lake is
reduced and since most lake’s summer thermal stratification has
ended (allowing rotenone to circulate throughout the water column).
Spring rotenone treatment are occasionally performed on certain
lakes with extensive shallow or weedy areas; higher water levels in
the spring make these areas more accessible by boat.

Legal Standing

RCW 77.12.420 empowers the Wildlife Commission to eradicate
"undesirable types of fish. The Commission’s right to rehabilitate
lakes and streams was affirmed by Thurston-Mason County Superior
Court in the case of Patrick vs. Biggs (#27476), January, 1954.

Funding

Lake and stream rehabilitation operations are funded through
fishing license fees and through taxes collected by the federal
government on fishing tackle at the manufacturing 1level and
apportioned to states under the Dingell-Johnson Act. Dingell-
Johnson funds are limited to 755 of total project costs. A 25%
contribution on Department of Wildlife monies 1is required by
federal law. ©Lake and stream rehabilitation with rotenone is an
approve fishery management activity under Dingell-Johnson funding.
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DETAILED ASSESSMENT OF IMPACTS

Earth

Lake and stream rehabilitation may have some effect on lake soils
since changing diversity of fish can influence rate and
distribution of organic sedimentation. No specific data are
available on this subject. '

By enhancing fishing in a lake, more fishermen may visit the area.
Increased human activity may also increase erosion if vegetation
becomes trampled and undeveloped trails are used more frequently.

aAir

Rotenone droplets or mist may be carried in the air from the liquid
applications. Powder rotenone is applied by towing an open sack
underwater, so escape of particles in the air should be minimal.
Decomposing fish emit an adverse odor to the surrounding
atmosphere. Since the rate of decomposition is influenced by
temperature and moisture, rehabilitation projects are usually
scheduled during periods that minimize the undesirable aspects of
decomposition. In residential areas, dead fish are sometimes used
in gardens and flower beds as fertilizer by local residents.

Also better fishing in an area usually attracts more people during
fishing season. This may increase noise and air pollution from
cars and boats.

Water

From a human use standpoint, important water quality parameters in
lakes include dissolved oxygen, fecal coliform levels, total
dissolved gas, temperature, Ph, turbidity, and aesthetic values
(Title 173 WAC, Water Quality Standards, pages 187-1988, 1983).
Where lakes supply drinking water for people or livestock, safety
and palatability of the water are obvious concerns. A variety of
other chemical and biological parameters are also considered here
as water quality factors.

Some important aspects of water quality tHat are affected
indirectly by rotenone treatment include phytoplankton, which
affects water transparency and thus aesthetic values and dissolved
oxygen levels at the sediment/water interface, and the effect of
fish stocking on lake phosphorous loads.
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There has been only one comprehensive study of how rotenone
treatment indirectly affects all routinely-measured water quality
parameters : Bonn and Holbert (1961) conducted tests on 18 water
quality indicators in Lake Lavon and Bonham State Park Lake, Texas.
Their goal was to determine the indirect effects of rotenone
treatment on municipal drinking water supplies. Only coves in Lake
Lavon were treated, with non-treated coves serving as controls. In
Bonham State Park Lake, all 49 acres were treated for a complete
fish kill and results were compared with pretreatment data.
Standard rotenone formulations and dosages were used, and after
dead fish were weighed, their carcasses were punctured and
scattered back into the water to create a natural post-treatment

environment. Samples of water were taken from various depths at
two-week intervals during the year, and at shorter intervals
immediately prior to and after the treatment. Bonn and Holbert

tested the following parameters.

1) temperature 10) total nitrogen

2) Ph 11) phosphorous

3) turbidity 12) potassium ‘

4) dissolved oxygen 13) total phytoplankton

5) carbon dioxide 14) generic makeup of phytoplankton

6) total alkalinity 15) total hardness

7) calcium 16) odor number

8) NH, 17) most probable number (of
coliform bacteria)

9) organic nitrogen 18) bacterial colonies per

milliliter

Of these 18 parameters, only four showed significant change due to
the treatment: turbidity decreased, phytoplankton increased,
noncoliform bacteria increased, and the water took on a
disagreeable taste and odor. The change in taste and odor of the
water was by far the greatest of the water quality changes noted.

Scattered water quality data from other studies (which gathered
them from ancillary information) are also available:

Brown and Ball (1943a) measured water temperature, dissolved
oxygen, carbon dioxide, methyl orange alkalinity, and pH throughout
the water column in Third Sister Lake, Michigan. None of the
factors changed significantly within four days of rotenone
treatment when compared to pre-treatment data.

Houf and Campbell (1977) compared three small, fishless Missouri
ponds treated with rotenone and two untreated control ponds,
concluding that rotenone treatment '"had no noticeable effect on
water chemistry." The monitored pH, water temperature (pond
surface and bottom), dissolved oxygen (pond surface and bottom),
hardness and alkalinity. These parameters were measured throughout
the experiment, which began three months before treatment and ended
a year after treatment.
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Wollitz (1962) measured several chemical and physical propertles of
two Montana ponds before and after rotenone treatment.

He found that oxygen saturation, alkalinity, pH, nitrate, and
inorganic phosphate levels did not change significantly after
treatment. In one of the ponds turbidity decreased and
transparency increased after poisoning. : '

Bandow (1980) found no significant changes in the surface
temperature, dissolved oxygen (surface and subsurface), or nitrate
nitrogen levels in Carls Lake, Minnesota, after it was poisoned
with rotenone. Transparency increased dramatically, however, due
to lower algae levels. ‘

Based on these studies and those of Bonn and Holbert (1961), it can
probably be concluded that water quality parameters unaffected by
rotenone treatment, either directly or indirectly are: water
temperature, dissolved oxygen, pH, alkalinity and carbon dioxide.

Those water quality parameters that have been shown to be affected
indirectly by rotenone treatment are:

1) Phytoplankton levels - Both increases and decreases in the
level of phytoplankton have been documented following
rotenone. ‘

2) Bacteria levels - Bonn and Holbert (1961) saw an increase in

the number of bacteria per milliliter in both Texas lakes they
rotencned. They felt the increase could be due to the decay
of dead fish and/or the agitation of the water and bottom
.sludge during the treatment. Since there was no corresponding
increase. in the Most Probable Number of coliforms, bacteria
other than coliform constituted the increase. The bacterial
increase was temporary, and the authors noted that most modern
water treatment plants could cope with it without difficulty.

3) Turbidity/Transparency - Turbidity in water is caused by
suspended matter, either organic or inorganic (American Public
Health Association, 1971). Strictly speaking, it is not the

same thing as transparency or visibility (usually measured by
Secchi disc), though it is obviously related. 1In lakes that
are turbid because bottom-scavenging fish constantly stir up
sediments, poisoning with rotenone or other toxicants almost
always results in. reduced turbidity. However, in a deep lake
with a coarse or gravelly substrate, turbidity from bottom-
scavenging fish is not likely a problem. It is possible that
nutrient re-suspension resulting in bloom conditions following
a rehabilitation can reducs water transparency, although no
studies were found to substantiate this speculation.

Increased water transparencies following carp poisoning have
been reported in lakes in Illinocis (Bennett, 1943), North
Dakota (Nesdham, 196¢), Colorado, (Tanner and Hayes, 1955),
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Ohio (Weier and Starr, 1950), Wisconsin (Klingbeil, 1975), and
Oklahoma (Eschmeyer, 1953). In Bass Lake, Indiana, removing
the carp by seining produced the same results (Ricker and
Gottschalk, 1940). None of these results were quantified and
only refer to increased "visibility" making it difficult to
determine which if two important factors - suspended silt, or
algae - was responsible for the improvement. Other work has
shown that carp and other bottom-feeders cloud the water not
only by stirring up mud but also by increasing algae levels,
and that the latter may be far more important in some lakes
(Lamarra, 1975; Smeltzer and Shapiro, 1982). Some researchers
specifically mentioned reductions in suspended silt or mud as
the reason for improved water clarity (Cushing and Olive,
1957; Hoffman and Olive, 1961; Hoffman and Payette, 1956).

Only two studies have actually quantified turbidity (as
distinct from transparency) following rotenone treatment: Bonn
and Holbert (1961) recorded an 85% reduction in turbidity five
days after poisoning Bonham State Park Lake, Texas. Wollitz
(1962) cited a 54% drop in turbidity in Middle Pond, Montana.
In both cases, the authors attributed the improvements to the
elimination of bottom feeding fish. Wollitz (1962), however,
reported no turbidity changes in a nearby pond containing few
bottom-feeders that was also poisoned.

While decreased turbidity is generally considered a good
thing, Bonn and Holbert (1961) suggested that clear water
might allow a surge in algae growth. They cautioned that this
would be undesirable in drinking water supplies if the algae
consisted either of wunpalatable blue-greens, or filter-
clogging forms.

Water Taste and Odor - Researchers at several municipal water
supplies have reported changes in the taste and odor of
rotenone-treated water.

Of the 18 water guality tests performed by Bonn and Holbert
(1961) on two Texas lakes, the greatest changes occurred in
water taste and odor. They rated these changes using the Odor
Number Test established by the American Water Works
Association (American Public Health Association, 1971).
Drinking water normally rated a "5-musty" before treatment
changed to a "30-kerosene" odor number the day following
treatment with rotenone. This was attributed to the
hydrocarbon solvents in the rotenone formulations (Noxfish and
Chemfish Special). Five percent rotenone powder produced no
such kerosene odor in treated water. The kerosene odor
disappeared five days after treatment.

A fishy odor was detected 17 days after treatment in one of
the Texas lakes. The odor number in a treated lake cove
became as high as "30-fishy" three days after treatment, then
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disappeared six days later. These changes obviously occurred
as a result of decaying fish. :

Since it contains no petroleum-based carriers, Bonn and
Holbert (1961) recommended 5% rotenone powder as a first
choice when treating drinking water supplies. Their
laboratory tests confirmed that rotenone powder by itself
produced no change in odor number.

While both the kerosene and fishy odors were temporary, Bonn
and Holbert’s (1961) lab tests showed that both odors could be
eliminated by a 1.0 ppm of activated carbon for each threshold
odor number produced.

Cohen et al. (1960; 196la; 1961b) made detailed laboratory and
field tests of rotenone in drinking water supplies. They also
concluded that the solvents, rather than rotenone itself,
caused the Kkerosene odor. Like Bonn and  Holbert, they
concluded that activated carbon was the most effective way to
reduce obnoxious odors resulting from emulsified rotenone
formulations. Depending on the commercial rotenone
formulation used, between 36 and 85 ppm activated carbon would
be needed to make water with 2 ppm formulation immediately

palatable.
Residual Toxicity in Drinking Water - Municipal drinking water
supplies have been treated with fish-killing concentrations of
rotenone in at least six states, with no harmful effects: Texas

(Bonn and Holbert, 1961); Massachusetts (Stroud, 1956); California
(Hoffman and Payette, 1956; State of California, 1983); Oklahoma
(Eschmeyer, 1953); Indiana (Barry, 1967); and North Dakota (Cohen

et al.l961b)". In some cases, rotenone treatment has been used
specifically to improve or protect the drinking water quality
(Hoffman and Payette, 1956; Barry, 1967). Cohen et al. (1960;

196la; 1961b) performed the most extensive research on the effects
of rotenone in public drinking water, and they concluded that
rotenone treatment was "consistent with the objective of a water
treatment: namely, to produce a safe and potable water".

Despite rotenone’s relative safety, the U.S. Environmental

Protection Agency (EPA), as a matter of policy, does not set
tolerances for pesticides in drinking water. States such as
California therefore require that whenever drinking water
reservolrs are treated, that the rotenone be detoxifed to
undetectable levels (less than 0.005 ppm pure rotenone; Dawson et
al., 1983) before it reaches the public. Detoxification can occur

through natural breakdown, chemical treatment or both (State of
California, 1985).

Rotenone breaks down quickly in the environment (Schnick, 1974),
and retantion tinme 1s long enough in most public reservoirs to
allow complete natural detoxification (Bonn and Holbert, 1961;
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Cohen et al., 1960). There are occasions when water may reach the
treatment plant with some residual toxicity. Although there is
little likelihood that it could have any effects on humans or
livestock (Cohen et al., 1960; U.S. EPA, 1981), this residue must
be removed, or chemically altered, to produce a finished drinking
water of good gquality. Cohen et al. (1960) made detailed
recommendations for eliminating any residual toxicity wusing
activated carbon. They also tested their laboratory finding in a
drinking water supply in North Dakota (Cohen et al., 1961b), using
61 ppm. activated carbon to detoxify a water supply treated with 2
ppm rotenone.

Both the State of cCalifornia (1985) and the National Academy of
Science (1983) have computed "safe" levels of rotenone in drinking
water. California’s figure was in the form of an Action Level
(AL = the concentration of material in water above which human
health may be adversely affected), while the Academy computed a
Suggested No-Adverse-Response Level (SNARL) . Both the AL and SNARL
were based on long-term dosing study of the Midwest Research
Institute (1980). Both California and the Academy applied a safety
factor of 1,000 to the study’s no-effect levels (10 for variability
within species, 10 because the study was less than a lifetime, and
10 because the study is to be applied to humans). The SNARL for a
150-pound person who drinks half a gallon of treated water per day
was 0.014 ppm pure rotenone; California’s more conservative AL for
a 22-pound child who drinks a quart of treated water per day was
0.004 ppm. :

The detection of pure rotenone in water is approximately 0.005 ppm,
slightly below the SNARL and slightly above the AL. The State of
California (1985) therefore concluded that a conservative and
justifiable requirement for human safety would be that no
measurable levels of rotenone be allowed in public drinking water.

Effects of Trout Stocking - Bottom-feeding fish directly influence

turbidity levels, and indirectly influence algae levels.
Planktivorous fish - among them both stocked trout and numerous
"target species" for rotenone - can also exert an indirect

influence on algae. Algae levels, in turn, can affect the levels
of ammonia, hydrogen sulfide, and hypolimnetic oxygen in a lake.

A lake stocked with trout or any other planktivorous fish will
generally support higher algae levels than the same lake if it were
fishless. This may partially offset by the periodic removal of
other planktivores (e.g., perch or bluegills) with rotenone, and
possibly the removal of nutrients from certain lakes through trout
angling.

In annual stocking of trout-only lakes in Washington state, no

change beyond those which have historically occurred as part of
- previocus rehabilitation and stocking of trout only lakes in any
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water quality parameter would be expected due to a post-rotenone
introduction of the same (i.e., historical) magnitude.

Plants

According to most studies, phytoplankton is not directly affected
by rotenone at concentrations of up to 3 ppm of the 5% dust
(Bandow, 1980; Anderson, 1970; Wrenn, 1965; Kiser et al., 1963;
Bonn and Holbert, 1961; Hooper, 1948; Smith, 1940; Smith, 1941;
Brown and Ball, 1943a; Stenson, 1972).

Only two authors have reported toxic effects on phytoplankton:
Wollitz (1962) stated that Dinobryson was absent for two weeks in
a Montana pond treated with 0.7 ppm Pro-Noxfish. It returned to
its former abundance two weeks later, and no other phytoplankters
were affected. Almguist (1959) reported that concentrations of 5%
rotenone above 2 ppm killed all Volvox, while 1 ppm was capable of
destroying Ceratium. Anderson (1970), however, noted no decrease
in either genus when subjected to 0.75 ppm.

Indirect Effects of Rotenone and Trout Stocking - It is difficult
to summarize the indirect effects of rotenone and subsequent trout
stocking as there are a greater number of trophic links involved.

Figure 1 is a flow chart showing the most important ways in which
rotenone poisoning and subsequent trout introductions may influence
lake algae levels. It is assumed for simplicity’s sake that the
two main factors that influence algae growth are the amount of
phosphorous (P) avaialable and the level of grazing by zooplankton.

While productivity in some lakes 1s limited by other nutrients
(e.g. nitrogen, silicon, CO,) algal growth in most culturally
eutrophic lakes is controlled by the amount of phosphorus available
(Schindler, 1974; Vollenwelder, 1968). Within the limits normally
found in lakes, Figure 1 illustrates the valid generalization that
when phosphorus -increases, so do algae levels; when phosphorus
decreases, algae is reduced. ’

There is also ample evidence in the literature supporting the

second assumption made in Figure 1: increased grazing by
zooplankton generally crops down algae, while decreased grazing
boosts algal biomass (Gliwicz, 1975; Shapiro et al., 1975). There

are important exceptions, the first to be discussed is the pathways
in which rotenone and trout stocking affect phosphorus levels.
Rotenone treatment of a lake potentially affects phosphorus levels
in two ways: '

1) the numbers of bottom-feeding fish (such as carp and bullhead)
decrease, which in turn may reduce phosphorus levels; and

2) dead fish decay on the lake bottom releasing the phosphorus
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bound in their carcasses and possibly creating anoxic bottom
conditions which could release phosphorus from the lake
sediments.

Trout stocking also affects phosphorus levels in two ways:

1) trout not caught by anglers die and decay on the bottom,
increasing phosphorus as in (2) above; and

2) trout caught by anglers represent a loss of phosphorus from
the system.

Effect of Bottom-Feeding Fish on Phosphorus Levels - Bottom-feeding
fish such as carp, goldfish, and bullheads have for years been
associated with murky water (Moyle, 1968). Some of the reduced
transparency is due to suspended silt stirred up by the fish as
they scavenge the bottom especially in shallow lakes. But algal

blooms associated with these fish can play an important, if not

overriding role in clouding the water.

It is possible to separate the effects of silt and algae by
plotting the reciprocal of secchi disk transparency against

chlorophyl- concentrations (Brezonik, 1978); the intercept of the
regression represents the amount of murkiness due to substances
other than algae (e.g. silt) in the water. Smeltzer and Shapiro

(1982) did this in a carp and bullhead infested Minnesota lake, and
found that most of the light attenuation (71%) was caused by algae;
stirred-up silt was only a minor contributor.

Empirical evidence that bottom-feeding fish can cause algae blooms
comes from lakes where these fish have been poisoned: Hoffman and
Payette (1956) killed 107 tons of carp with rotenone in a San Diego
reservoir and within a month noted marked decreases in most algal
counts and increased transparency (though. a diatom bloom toock
place). Needham (1966) found that chlorophyta decreased steadily
and remained at low concentrations after posioning bottom fish in
North Dakota lakes. Bandow (1980) reported that reduced algal
levels followed bullhead removal in a number of Minnesota lakes.
Hrba’cek et al. (1961), Stenson et al. (1978), and Schindler and
Comita (1972) have all documented similar improvements following
the demise of bottom-feeders.

It was once widely accepted that bottom fish release nutrients
(such as phosphorus) into the lake by stirring up the bottom
sediments; in turn, these nutrients fostered algae blooms. While
agitation does release phosphorus (Zicker et al., 1965), there is
usually more phosphorus absorbed by aerobic sediments than lost
(Fitzgerald, 1970); 1f bottom fish were releasing phosphorus and
causing algal blooms, some other mechanism must be involved. Using
carp, Lamarra (1975) proved that it was mostly the digestive
activity of bentivorous fish that released phosphorus from the
sediments and, more importantly, raised chlorophyll levels. Simple
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mechanical stirring of the bottom, on the other hand, did not
release appreciable amounts of phosphorus nor did it increase algae
levels. Lamarra also showed that release of phosphorus in all its
forms was negatively correlated with fish size (i.e., bigger carp
release less phosphorus) and that 50% of the total phosphorus
excreted by all sizes of carp was in the form of orthophosphate,
which is immediately available for algal growth, Figures 2 and 3
display the relationships between carp size, carp density, and
sediment phosphorus release from Lamarra’s experiments. The actual
excretion rate of dissolved phosphorus for a specific weight class
of carp or bullhead may be computed from Lamarra’s regression
equations:

1) for carp: log,, E(DP) = -.49 log,,Ww + .027T + .77
2) for bullhead: log,, E(DP) = -.379 log,, W + .027T + .344
where:

E(DP) = specific excretion rate of dissolved phosphorus

(micrograms/gram wet weight per hour)
wet weight of fish (g)
temperature (°C)

W
T

With an estimate of fish biomass for various size classes in a
lake, it is possible to compute the annual phosphorus loading due
to carp and bullhead. Lamarra performed these calculations for the
typical "rough-fish" lake in Minnesota. Such a lake contains about
200 kg of carp/ha, and Lamarra estimated that they recycled between
1.07 mg and. 2.18 mg total P/n@/day, or 0.52 mg orthphosphate/n@/day.
Even the smaller, more conservative estimate is surprisingly high,
and Lamarra concluded that carp were probably liberating amounts of
sediment phosphorus that were significant in terms of the lakes’
total phosphorus budgets.

In view of its ability to liberate large amounts of phsophorus from
lake sediments, Lamarra termed the carp a '"phosphorus pump". This
ability is not confined to carp alone; the bullhead is also an
important "phosphorus pump" (Lamarra, 1976; Shapiro et al., 1975;
Bandow, 1980). ' Although no quantitative data exist, we can
probably add the goldfish to this list in view of its genetic
similarity to the carp (the two interbreed in the wild).

Smeltzer and Shapiro (1982) further investigated the significance
of these experimental findings in a lake dominated by black
bullheads and carp. They found that bullheads at a density of 59 .
kg/ha and carp at 43 kg/ha were contributing 88 mg of P/m?/year to
Lake Marion, Minnesota. This same eutrophic lake was receiving 84
mg of P/n@/year from external sources. The conclusion that
benthivorous fish were supplying the lake with as much phosphorus
as all external sources combined (drainage, rain, and septic tank
seepage) is astounding, and implicates them as major contributors
to algae blooms.
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It may be concluded that in lakes infested with carp or bullheads,
their removal by rotenone or other methods- will substantially
decrease phosphorus levels and thus algae levels. There are three
complications which may amend this conclusion:

1) This same phosphorus can also be released from lake sediments
in the absence of fish, particularly when the bottom becomes
anoxic (Hutchinson, 1957). In lakes where this is a major
source of annual phosphorus loading, the effect of bottom-
feeding fish may be negligible. At least in Marion Lake,
Smeltzer and Shapiro (1982) believed that excretion by carp
and bullheads was by far the most important internal source of
phosphorus. :

2) Aquatic macrophytes such as Elodea also act as "phosphorus
pumps" (Bandow, 1980; Welch, 1980) and these may proliferate
in the absence of bottom fish which uproot and destroy them.
This was the case in 14-foot deep Carls Lake, Minnesota
(Bandow, 1980); after black bullheads were poisoned with
rotenone, aquatic macrophytes (including FElodea) were no
longer held in check, and expanded to occupy the entire lake
bottom. These plants released large amounts of phosphorus and
ammonia from the sediments, essentially negating the water
quality benefits gained by killing the bullheads. Bandow did
note, however, that in deeper lakes the growth of rooted
aquatic plants should be less extensive.

3) When benthivorous fish are eliminated by any method which
leaves their carcasses in the lake (e.g., rotenone), the
phosphorus released by decay will at least temporarily mollify
the beneficial effects of destroying themn. For example,
Smeltzer and Shapiro (1982) calculated that the phosphorus
released by decaying carp and bullhead carcasses following
rotenone treatment of Marion Lake would be equal to a third of
the sediment phosphorus liberated by the fish if they were
alive. As a consequence, phosphorus levels and algae would
not decline as rapidly as expected following treatment.
However, the authors pointed out that phosphorus release from
fish decay constituted only a single "pulse" of loading,
whereas excretion was a chronic source.

In summary, elimination of bottom-feeding fish with rotenone can be
expected to lower phosphorous levels and thus algal abundance 1in
lakes where:

1) algal abundance is limited by phosphorus; 2) lake sediments
contain substantial amounts of phosphorus; and 3) potential
sediment phosphorus released by fish is high compared to other
mechanisms (e.g., sediment phosphorus release during periods of
oxygen-depletion in the bottom muds).

24

// N



The degree of phosphorus reduction may be roughly predicted from
Lamarra‘s (1976) equations when estimates of fish biomass, size
distribution and phosphorus loading from other source are
available.

Effect of Decaying Fish on Phosphorus Levels - The phosphorus
content of fish has been studied by several authors (Table B).
Phosphorus made up between 0.3 and 1.6% of the whole-fish wet
weight in these studies. While phosphorus content of fish varies
somewhat with species, age, sex season, sexual maturity, and
trophic state of the lake (Vinogradov, 1953; Dunst et al., 1974),
Bull and Mackay (1976) suggested that an average value of 0.4% is
adequate for a wide range of fish populations.

When fish die, the phosphorus bound in their carcasses must be
broken down into the dissolved inorganic or organic form, mostly by
bacterial action and autolysis, before it is usable by
phytoplankton. This breakdown is extremely rapid; Wetzel (1983)
states that "small fish" lose 7% of their total substance
immediately upon death, and that 28% has been released within 24
hours under aerobic conditions in 20-25° C water. Once phosphorus
is in an available form it is taken up so rapidly by algae and
other plants that it is often not measurable. The release of this
phosphorus from fish carcasses following rotenone treatment has
been suggested as a cause of algae blooms (Funk and Moore, 1984).

Most fish killed by rotenone sink to the bottom of lakes
undetected. It has been estimated that at 57-58° F (the average
fall surface water temperature of lakes treated in Washington),
only about 20-30% of the dead fish would surface within 24 hours.
Thus, even when a concerted effort is made to recover all
carcasses, at least 70% of the phosphorus content of the fish stock.
will be released into the lake through decay.

One final figure is necessary to estimate the amount of phosphorus
(in g/ha) released by decaying carcasses: the total weight of fish
per unit of surface area, or standing crop. This can vary
considerably depending on the lake and the fish present. Bennett
(1962) presented mean standing crop values for nineteen fish
(usually in combination with other species) in U.S. lakes and
reservoirs. Mean values for fish found in Washington state ranged
from 4 lbs/acre (4.5 kg/ha) where trout dominated, to 100 lbs/acre

(112 kg/ha) where carp dominated. The maximum standing crop
recorded for U.S. waters was 1,235 lbs/acre (1,384 kg/ha) in Iowa
ponds (Bennett, 1962; Dunst et al., 1974). Two Indiana reservoirs

that contained a mixed population of warmwater species (mostly
bullheads, bluegill, and carp) were rotenoned and then completely
drained; this procedure provided standing crop figures of 153
lbs/acre and 300 lbs/acre (171 and 336 kg/ha) for the two lakes
(Barry, 1967).
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~aple ®. Phosphorus (P) content of fish.

necies % of Wet Weight Reference

Fish in general
Atlantic salmon
Brown trout

.3

.168 a/ ‘Vinogradov (1953)
.246 a/

Black crappie b/

Bluegill b/

Redear b/ ‘
Warmouth b/ Burgess (1966)

Gizzard shad b/

—_OOOD OO O OO
oo YOy 00 4

Golden shiner .5 b/

Brown bullhead .5 b/

Longnose gar .6 b/

'Sockeye salmon (prespawning) 0.384 ‘ Donaldson (1967)
Sockeye salmon (spent) 0.345 : o
Rainbow trout 0.4 -

Carp - 0.5 8ull and Mackay (1976)
Northern squawfish 0.4 '

Largescale sucker 0.3

a/ Listed as phosphorus content of "soft part" of fish; may not reflect
percentage of the whole fish.

b/ Burgess' figures originally reflected percentage of phosphates in the fish.

Here his figures have been modified in accordance with Dunst et al. (1974),
who reported percentage of phesphorus. o



In Washington lakes proposed for rotenone treatment - often
characterized by an out-of-balance fish population - total standing
crop is often on the order of 75 lbs/acre (84 kg/ha); but where
carp or goldfish dominate, this figure can be much higher
(Fletcher, WDW, pers. comm.). For example, Picnic Point Pond in
western Washington contained about 362 kg of goldfish (and almost
no other fish) when rotenoned in 1980, yielding 228 kg/ha or 203
lbs/acre (calculated from data collected by University of
Washington students and WDW biologist; Washington Department of
Wildlife, 1981; and length-weight regressions for goldfish in
Carlander, 1969). ' ‘

Roughly, the decay of fish killed by rotenone could release as much
as 0.3 kg P/ha into an out-of-balance mixed species water with 84
kg fish/ha for a carp or goldfish infested water with 300 kg
- fish/ha, the estimate jumps to 1.2 kg P/ha. These estimates are
based on P = 0.4% of the wet weight of a fish. '

In one respect, whatever the biomass of decaying fish and
consequent phosphorus release, the phosphorus released by carcasses
is phosphorus that would be released in any event when the fish die
a natural death. On the other hand, in addition to the large
biomass of "target" fish that are killed, there are always some
residual trout left in the lake at the time of rotencne treatment.
These are stocked fish, and thus the phosphorus in their carcasses
represents an addition of phosphorus to the lake that occurs as a
result of the trout program. Generally, however, the biomass of
trout in a lake designated for rotenone treatment is small. These
lakes are usually taken out of production as fry growing lakes the
year of the treatment and given a nominal stocking of legal sized
trout. Most of these fish are readily caught before the fall
treatment. For example, 38% of the stocked legals in Pine Lake,
Washington were taken by fishermen on Opening Day, 1980, and the
majority removed within a week (Zisette, 1981). From a nutrient-
loading standpoint, the essential difference between ‘natural
mortality and rotenone poisoning is that in the case of rotenone,
all the phosphorus contained in the lake’s standing crop of fish is
released at the same time, rather than gradually.

There is no way to carry the estimate of how much of this
phosphorus could become available for algae growth without some
knowledge of a particular lake’s limnology; too many factors
influence the fate of phosphorus, of which the most important are:

1) Flushing rate of the lake . In rapidly flushing lakes, even
high phosphorus loads can be insignificant (Welch, 1980).
This may occur in some Washington lakes that are rotenoned in
the fall, Jjust prior to relatively massive rainfall and
flushing. Naturally, the effect of sudden nutrient release in
a lake with little outflow would be greater. '




2) conditions at the water-sediment interface . If the lake’s
hypolimnion is aerobic, much of the phosphorus released from
the carcasses will be gquickly tied up by metal complexes and
resettle, unavailable for algae growth. Anaerobic conditions,
on the other hand, would allow much of this phosphorus to
reach the overlying water where it could be used by algae.

In many instances algae plooms occur shortly after rotenone
treatment and some authors suggest that the release of phosphorus
from decaying carcasses is a contributing factor. Table C shows
the results of several studies where algal abundance was measured
or noted shortly after rotenone treatment. In nine of eleven
podies of water, an algae bloom developed following rotenone
treatment (although on Fern Lake, an application two years later
produced no bloom). A "bloom" in this case is any increase in
total algae (measured in chlorophyll a, cells/l, etc.) thought to
be significant by the investigator(s) . :

As Table C shows, it is impossible to determine exactly why blooms
occurred following rotenone. = The two most likely hypotheses are
phosphorus released from carcasses and/or a decrease in grazing
following the annihilation of zooplankton, but it is impossible to
separate the effects of the two. While no definintive answer
exists, it.is interesting to note that there were no fish in
Burress’ (1982) ponds, yet a bloom still developed following
rotenone. Clearly, carcasses played no role in that case. Also,
no bloom developed on Third sister Lake (Brown and Ball, 1943a),
zooplankton was only mildly affected by rotenone, cladocerans were
never absent from the open water. These two examples seem to
suggest that phosphorus released from fish carcasses is not nearly
as important as reduced phosphorus grazing in causing algal blooms.
contradictory evidence from carls Lake (Bandow, 1980) and Fern Lake
1962 (Fowler, 1973) - where no plooms developed despite the near
annihilation of grazers - make firm conclusions impossible. Where
they occur, it 1is 1likely that both phosphorus release from
carcasses and reduced grazing are responsible for post-rotenone
algae blooms, with the relative importance of each determined by
the particulars of each lake.

Quantitative data are available from seven of the studies listed in
Table C. These are graphed in Figures 4 through 10, showing the
timing and magnitude of post-rotenone algae blooms where they
developed.

Comparing "bloom" levels in a rotenon -ar with the algae levels
during that same period in a nonroter 2 year is perhaps the best
way to gauge the magnitude of these b oms. These type of data are
available for Pine Lake, Washing on and Hodges Reservolir,
Ccalifornia. On Fern Lake, Washington, a continuous 12-year record
of phytoplankton levels provides us with five seasons of data in

nonrotenone vears for comparlson with the bloom that followed (
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Volume weighted mean chloronhyll a content in the
epilimnion of Pine Lake, Washington, before and
after rotenone. Source: Welch et al. 1981.
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Figure lO. Phytoplankton levels (as measured by chlorophyll a) in

Carls Lake, Minnesota, before and after rotenone. Source:
Bandow 1980.
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the rotenone treatment in 1960 (artificial fertilization and ii
second rotenone treatment obscure results in the other years).

The algae levels in rotenone and nonrotenone years are shown for
these three lakes in Table D. Algae levels increased 4 to 6 fold
shortly after rotenone treatment, when compared with "normal"

levels in nontreated years. It is important to remember that
blooms de not always occur following rotenone, even in a particular
lake (i.e., Fern Lake). Table D demonstrates the magnitude of

post-rotenone blooms where they occurred. These blooms generally
lasted 1-2 months, judging by the studies on Pine, Fern and Hodges
lakes. Most rotenone applications in Washington take place in the
fall; a bloom, if one occurs, would be expected to subside sometime
in December with decreasing sunlight and flushing, as was the case
on Pine Lake in 1980.

There is little information whether the increased phosphorus from
fish carcasses decaying on the bottom will cause algae blooms (or
intensify regularly-occurring blooms) the following season. Algae
levels in Fern Lake in 1961 and 1963 (following the 1960 and 1962
treatments) indicate nothing out of the ordinary when compared to
other years. These data agree with the wealth of information
available from lakes and ponds that have been artificially
fertilized; Shapiro (1970) cited the early work of Einsele and
Edmondson, noting that "single-shot" fertilization with, .
superphosphates was ineffectual - the results lasted only for th
vear of application and did not carry over to any extent to the’

next year unless the fertilization was repeated. More recent
experiments in Canada have confirmed this: when Schindler and Fee
(1974) fertilized a lake with -phosphorus, algae increased

dramatically during the two treatment years, but fell to
pretreatment levels as soon as phosphourus input was curtailed.
Figure 15 shows the same pattern in Fern Lake, which was fertilized
in 1965, 1968 and 1969. This is generally true of lakes in the low
or medium productivity range (Wetzel, 1983).  In eutrophic lakes
this fertilizer might be recycled from the sediments, causing
further blooms. :

There is an essential difference between artificial fertilization
and phosphrus released from rotenone killed carcasses: artificially
fertilized lakes (including the great many eutrophic lakes that
recieve phosphorus from septic tanks, runoff, etc.) are enriched by
phosphorus from external sources. In a rotenoned lake, the sudden
enrichment comes from fish that obtained all their phosphorus from
the lake. Thus, there is no net increase in phosphorus, only a
sudden and unusual availability that takes place following the
poisoning. This essentially confines the bloom potenial to the
year of treatment, even 1in eutrophic lakes. For example,
researchers concluded that on culturally-eutrophic Pine Lake,
"phosphorus remineralization of decomposing organisms (following
the 1980 rotenone treatment) may have been at least partiall{
responsible for an observed elevation in whole-lake phosphorus .
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(about 5 micrograms/l while inflow phosphorus was negligible).
Available data, though inconclusive, suggest that existing autumn
rotenone applications do not have a significant impact on annual
phosphorus dynamics and algal blooms in Pine Lake" (Municipality of
Metropolitan Seattle, 1981).

As shown in Figure 1, there is a second way in which decaying fish
carcasses have the potential for increasing phosphorus levels:
decomposition requires oxygen in most cases, and large numbers of
fish carcasses may turn a lake bottom anaerobic. Sediment
phosphorus is normally trapped (or release is insignificant) in
aerobic bottoms where the overlying water contains more than 1 mg
oxygen per liter (Wetzel, 1983). But when oxygen levels fall below
this point, redox potentials also decrease, and a sudden release of
phosphate phosphorus occurs from the sediments. When the water is
reoxygentated, phosphate phosphorus is again resettled and trapped
in the sediments. In this case, the source of phosphorus is not
the fish carcasses themselves, but the lake sediment that has
become depleted of oxygen by their decay. Phosphorus released from
the sediments by any means can be a major cause of algae blooms
(Cook et al., 1977).

Almost no data are available from rotenoned lakes on this subject.
While a number of studies routinely recorded oxygen levels at
various depths before and after treatment, there is often no
mention of whether or not the fish carcasses were removed from the

study lake or allowed to decay. In others, such as Pine Lake,
(Welch et al., 1981), the bottom was anoxic even in nonrotenone
years.

In research designed to determine the indirect effects of rotenone
on municipal water supplies, Bonn and Holbert (1961) poisoned two
Texas lakes, killing 79 pounds of fish per acre on one and 145
lbs/acre on the other. After a weigh-in, the body cavities of the
fish were punctured and they were scattered back into the lakes to
create a natural post-kill condition. Oxygen levels as well as
other chemical and biological parameters were measured at various
depths, including the bottom. Water temperatures were high (70-91°
F) and the carcasses decayed rapidly, with significant increases in
total organic nitrogen and bacterial levels. Although some oxygen
must have been consumed by the bacterial decomposition, Bonn and
Holbert reported no significant change in oxygen levels. A "bloom"
did develop in both lakes, but not because of anaerobic phosphorus
release from the sediments. However, these Texas lakes were fairly
shallow (maximum depths of 15.5 and 9 feet), and oxygen depletion
in deeper lakes, where oxygen diffusion from the surface takes more
time, might still occur.

The hypolimnia of many lakes - especially eutrophic ones -
typically become anoxic during the summer and winter (Welch, 1980).
Where this yearly pattern occurs, rotenone-killed fish carcasses
cannot be expected to aggravate sediment phosphorus release, since
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oxygen levels are already below 1 mg oxygen/liter. In culturally
eutrophic Pine Lake, for example, the October 1980. rotenone
treatment occurred well after the bottom became completely anoxic
in early July; as in other years, the lake turned over 1in early
December and the bottom was reoxygénated (Welch et al., 1981).

Effect of Trout Stocking on Phosphorus Levels - When a fingerling
trout is stocked in a lake, the 0.4% of its wet weight that is
phosphorus is added to the system. When and if the trout is caught
by an angler, this amount of phosphorus plus 0.4% of the added
weight that the trout has gained during its growth period in the
lake is removed. ’ ‘

Phosphorus tied up in the tissue of living fish is not immediately
available for use by algae; but it is quickly released back into
the water if the fish dies in the lake. 1In the same way, a fish
removed from the lake represents a loss from the total phosphorus
pool and ultimately from the available phosphorus pool.

Fish stocking records and catch estimates can be used to determine
if the process of stocking and harvesting trout fertilize lakes or
reverse fertilization. - While fish stocking records are readily
available for all of Washington’s stocked lakes, creel survey
estimates of season-long catch are more difficult to come by.
Where season-long catch estimates are not available, catch
estimates from opening day of lowland fishing season (usually
occuriing on the third or fourth Sunday in April) can be used as a
minimum value for phosphorus removal by angling. . Creel surveys are
performed on all of Washington’s lowland trout lakes on opening
day, and the statistical methodology for estimating catches of
fingerling-origin trout on these lakes is well developed (Brown,
1978) .

Table E displays the estimates of phosphorus added and removed by
trout stocking and harvest on selected Washington lakes. All are
lowland "trout-only" waters, most have been treated with rotenone,
and they are fairly representative in terms of stocking and catch
rates. These particular lakes were selected because reliable
season long (or opening day) catch estimates were available.

Only the Kitsap County lakes surveyed by Johnston (1973) showed a
net gain in phosphorus; Table E indicates that in most cases, more

phosphorus 1is removed from trout-only lakes than is added. The
amount varies considerably, however, mostly depending on the
percentage of the fingerling introduction that is caught. In

eastern Washington lakes, this percentage is typically high, while
in western Washington it is usually much lower. This difference is
due mostly to fingerling survival: mark-recapture studies have
shown that survival from stocking to opening day ranges from 2% to
61% in western Washinngton lakes and from 70% to 87% in eastern
Washington lakes (Washington Department of Wildlife, 1968).
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Table E shows that net removal of phosphorus in the eastern
Washington lakes varied between 300 and 1,269 g/ha/yr. In the
western Washington lakes, net removal ranged from 6 to 93 g
phosphorus/ha/yr., with a net addition of 2 g of phosphorus/ha/yr
in the Kitsap County lakes. While most of the lakes in western
Washington are represented by only Opening Day or partial season
catch estimates, it is well documented that a major portion of the
season long catch occurs on Opening Day (Johnston, 1973; Cummins,
1975) .

Phosphorus-loading data are available for only two lakes, Liberty
Lake and Pine Lake. Both of which are culturally eutrophic lakes,
suffering from nuisance algae blooms, and both are phosphorus
limited, making analysis of the significance in terms of the lakes’
total phosphorus budgets difficult.

In the case of Pine Lake, Table E makes it clear that the net
phosphorus removed by trout harvest (6 g/ha/yr) is insignificant
when compared to the total phosphorus loading of 4,146 g/ha/yr.
Since no phosphorus budgets exist for the other western Washington
lakes shown in Table E, it can only be assumed that they lie within
the broad range of values suggested by Vollenweider (1968): between
700 and 2500 g/ha/yr on low nutrient lakes, and between 1300 and
5000 g/ha/yr on "problem lakes". It is easy to see that either
addition or removal of phosphorus in the range given for western
Washington lakes in Table E (+2 to =93 g/ha/yr) is negligible
compared to the phosphorus loads.

The situation is different in eastern Washington lakes, where
phosphorus was removed by anglers in much larger amounts - 300 to
1,269 g phosphorus/ha/yr. These withdrawals of phosphorus from
lakes could play an important role in counteracting the
eutrophication process. On Liberty Lake, for example, anglers
removed 322 g/ha in 1978. Total phosphorus loading in 1974-1978
was 3,700 g/ha/yr so that 8.7% of the phosphorus added to the lake

in 1978 from all sources could have been removed by anglers that
year.

Bull and Mackay (1976) drew a similar table for two Canandian
lakes: one eutrophic, the other oligotrophic - and concluded that
even at the maximum sustainable vield (MSY), less than 1% of the
phosphorus entering the lakes could be removed by anglers. Thus,
fish harvest could neither slow nor reverse the process of

eutrophication. While this conclusion agrees closely with our
analysis of the western Washington lakes, it contradicts the
eastern Washington data. The reason for the difference is that

Bull and Mackay estimated the top catch from their lakes was less
than 3 kg/ha/yr, an extremely low figure that compares only with
the Kitsap County lakes in Table E. A likely explanation for this
low estimate is that the Canadian lakes were not sustained by
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hatchery stocks; a much lower catch-per-unit-surface-area would be
expected from a natural population of salmonids than from a stocked
lake. ‘

Burgess (1966) noted that sport harvest of warmwater fish removed
over 5,000 lbs. of phosphates from Lake Harris, Florida, over a 15-
month period. The author 1likened this to removing all the
phosphates from the annual untreated waste of over 1,000 persons.
He further noted that while phosphorus removed by anglers would not
cause an immediate reduction of nutrients in the lake, it would
serve as a deterrent to eutrophication. Dunst et al. (1974)
concurred that harvesting fish might significantly reduce nutrients
in some problem lakes.

While fishing is not a consequence of a "trout-only" program, the
large catches associated with eastern Washington "trout-only" lakes
do not ordinarily occur in waters managed for "mixed-species". On
the "trout-only" waters in eastern Washington cited in Table E, for
example, the average harvest was 1,491 trout/acre/year; the average
on four similar-sized "mixed-species" lakes (two in eastern and two
in western Washington) was only 120 "warmwater" fish/acre/year.
Trout catches were not included in the latter calculation because
trout planted as "legals" just before Opening Day do not constitute
a net loss of nutrients when caught. These figures indicate that
harvest (and thus nutrient removal by anglers) is roughly ten times
greater on high-yield "trout-only" lakes than on "mixed-species"
lakes.

Effects of Rotenone on Trout Stocking and Grazing - Figure 1 shows
that both rotenone treatment and subsequent trout stocking affect
grazing by zooplankton. :

Poisoning a lake with rotenone temporarily destroys the zooplankton
and thus decreases grazing (Figure 1). 95 to 100% of the open-
water zooplankton are destroyed within a few days, and crustacean
plankters are generally absent from open-water tows for two to
twelve weeks. Since these ‘are the most important grazers, a
decrease in grazing followed by a surge in phytplankton could
logically be expected.

Algae blooms commonly follow rotenone treatments and reduced
grazing is often cited as a cause (Table C). Phosphorus released
by carcasses probably also contributes to these blooms, and it is
impossible to separate the effects of the two. Long-term (i.e.,
beyond the year of application) effects of rotenone on grazing are
unlikely; in most cases, zooplankton have recovered in abundance
and diversity to prerotenone levels within two to twelve months
after treatment. : '

Zooplankton populations eventually recover from rotenone poisoning,
and they usually do so before fish re-enter the lake or are
restocked. Figure 1 shows that in the absence of fish, large
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zooplankters such as Daphnia pulex usually dominate the recovered
community, and that they will continue to dominate if fish are not
restocked or otherwise re-enter the lake. Also, already common
plankters often increase in body size when they recover in the
absence of fish.

These large zooplankters are more efficient grazers than small ones

(Kerfoot, 1980). Burns (1969) found that the filtration rates of
several Daphnia species were roughly proportional to the square or
even cube of their body lengths. This difference in grazer body

size may be even more important than grazer population size in
controlling algae. Hrbacek et al. (1961) found that algae levels
in a rotenoned Czechoslovakian backwater decreased ‘despite a
smaller standing crop of zooplankton, the reason being that a large
daphnid suddenly became dominant following the fish kill.

This sequence - large grazers becoming dominant in the absence of
planktivorous fish and reducing algae levels - has been.repeatedly
demonstrated in both small-scale enclosure experiments (Lynch and
Shapiro, 1981; Andersson et al. 1978 and whole-lake situations
(Shapiro, 1979). Reducing algae levels by increasing large grazer
populations (either by kllllng planktivorous fish with rotenone or
by 1ntroduc1ng large piscivorous fish which accomplish the same
thing) is one of the cornerstones of the "biomanipulation"
movement, and the literature is abundant and detailed (i.e.,
Shapiro et al, 1982; Goad, 1982).

Shapiro and Smeltzer (1982) reviewed data from 13 Minnesota lakes
poisoned with rotenone or toxaphene; seven showed transparency
increases following poisoning, two probably became clearer, and
four showed no change. Unfortunately, the speciés of "undesirable"
fish eliminated - presumably planktivorous in at least some of the
improved lakes - were not mentioned; these lakes were managed for
bass, pike and walleye. The authors made the reasonable assumption
that the lakes that cleared did so because of reduced algae levels,
and that either increased grazing in the absence of fish (or both)
was the cause.

Eutrophic Wirth Lake, Minnesota was intensively studied by Shapiro
(1982) before and after rotenone treatment. The fish population,
made up of crappies (Pomoxis spp.) (50%), bluegill sunfish (Lepomis
macrochirus) (25%), carp (Cyprinus carpio) (15%) and perch,
bullheads (Ictalurus spp.), suckers (Catostomidae), northern pike
(Esox lucius) and largemouth bass (Micropterus salmoides) (10%),
was poisoned in September 1977. The zooplankton population was
virtually wiped out by the rotenone, but partlal recovery was
apparent .25 days later. . Due to complications, it is impossible to
tell whether or not a post-rotenone bloom occurred during this
period. The following year a huge population of large daphnids: (D.
pulex) appeared, and algae levels decreased dramatically with a
concurrent increase in transparency (Figure 11). The Daphnia
population averaged 256,000 per m?, or 32 individuals per liter, a
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concentration theoretically capable of removing virtually all
filamentous blue-green algae from the lake (Lynch and Shapiro,
1981).

Within a short time, the blue-greens Aphanizomenon, Oscillatoria
and Anabaena were reduced to low levels and replaced by green
algae. Overall, algae levels in early 1978 were much lower than in
the four years before rotenone, and Shapiro credited the large
zooplankters. What makes Wirth Lake a particularly interesting
case is that phosphorus levels were dramatically increasing (as a
result of mechanical water circulation) during the same time that
rotenone treatment and large daphnid increases were taking place;
thus, algae levels decreased due to grazing despite
"fertilization". However, later in 1978, chlorophyll levels
increased and transparency decreased due to certain complications.

Clear Lake, Minnesota provides another example: Smeltzer (1982)
noted that algae levels declined sharply the year following
rotenone, and he credited increased grazing by large zooplankton in
the absence of fish. Based on these and other experiments, Shapiro
and Smeltzer (1982) concluded that "in balance, then, it would
appear that use of fish toxicants does reduce algal abundance and
that in some cases the effect has been longlasting".

Grazing Effects on Different Algae - Generally, when large grazers
become dominant algae levels decrease, although there are some
important exceptions to this pattern:

1) not all algae can be eaten by zooplankton;

2) some algae, though eaten, can pass through a zooplankter’s gut
unaffected; and

3) some algal species increase in number or change to inedible

forms when grazing on them increases.

In the first two cases the net result is that algae levels are
unaffected by increases in the number of grazers. In the third
case, increased grazing may actually reverse the usual pattern and
cause algal levels to increase. The dotted line in Figure 1
leading to an "Aphanizomenon flake bloom" depicts this pathway; it
is a dotted rather than a solid line to indicate that it is an
exception that only seems to occur under special circumstances.

Table F lists some algae that are not significantly affected by
zooplankton grazing. In most cases, these forms are too large for
‘plankters to eat. In some cases, gelatinous green algae like
Sphaerocystis are eaten but pass intact through the grazer’s gut.
In still other cases, algal species secrete something that causes
grazers to reject them, or that is actually toxic to zooplankton.
The net result is the same: if these forms are dominant in a lake,
grazing by itself can rarely be expected to reduce their abundance.
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BLUE GREEN ALGAE

L

Table F:.

Algal types unaffected and suppressed by grazing.

Numbers in

parentheses refer to references in the literature (see below).

USUALLY UNAFFECTED 8Y GRAZING

Anacystis nidutans (1)
Merismooedia sp. (1)

Synechocystis sp, (1)

Gloeocapsa alpicola (1)
Microcystis aeruginesa. (2, 3)
Oscillatoria rubescens (4) a/
Oscillatoria agardhii (4) a/
Anabaena flos-aquae (5, 1)

Anabaena affinis (5)
Anabaena sp. (6) '

Anabaena ("some species") (2)
Gloeotricnia sp. (6)

Lyngbya sp. (6)
Synechococcus elgngata (1)
Aphanizomenon sp. (7) b/
Synechococcus cadrorum (1)
caudata (5)
willei (9)
Cosmarium depressum (5)

Mallamonas

Peridinium

Sphaerocystis schroeteri (5)

gelatinosa (5)

£lakatrothrix

Chroococcus limneticus (5)

USUALLY SUPPRESSED BY GRAZING

Aphanizomenan

flos-aquae. (2) b/

Cryptomonas (5)
Rhodomonas  (5)
Cyclotella

V9 NIFW9 318

comta (%)

Asterionella formasa (8)

Qacystis lacustris (5)

Chlamydomonas

(1, 5)

. Coelosphaerium dubium (2)

Ankistrodesmus

falcatus (1)

Chlorella

vulgaris (1)

large diatoms (5)
flagellates (5)
euglenids (5)
ciliates (5)

Arnold (1971)

Sorokin {1968)

“Lampert (1981)

famondson and Litt {1982}
Porter (1973)

Edmondson (1957

Lafevre (1950)

et o o
~Oh U LI rd e
e e e o et S
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a/
b/

Oscillatoria apparently inhibits
only Daphnia sp.

note that this species is listed in
both columns; although Lefevre does
not actually mention it, he probably
was referring to the "flake" colony
form of Aphanizomenan as inedible.
Sorokin and others have found A.
flos-aquae in the filementous or
non-flake faorm to be readily eaten.
See discussion on this species in
text,
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Many of these inedible forms of algae are the very ones responsible
for obnoxious blooms in eutrophic "problem" lakes. Blue-green
algae are usually the most objectionable, and as shown in Table F
many of these are unaffected by grazing.

This has far-reaching implications for "biomanipulators" interested
in cleaning up problem lakes. For example, Goad’s (1982) proposal
to increase grazing in Green Lake, Washington by eliminating yellow
perch (Perca flavescens) and other planktivores was dismissed by
Perkins (1982) because the problem-causing algae there were
primarily Gloeotrichia and other inedible blue-greens. Unless the
phytoplankton community could be changed to more edible forms - and

there are ways to do this - no great improvements would likely
occur. '
Not all blue-greens are inedible, however. Aphanizomenon, for

example, especially A. flos-aquae, 1is commonly found in many
eutrophic and mesotrophic lakes in Washington; Liberty Lake and
Lake Washington being two examples. Aphanizomenon has the ability

to exist in two forms: when filamentous, it is readily eaten,
especially by large grazers, and is a good food source (Sorokin,
1968) . But it also can clump together in the "flake" or "grass-

blade" form, which is inedible. 1Interestingly, this "flake" form
often develops in lakes with abundant large grazers such as Daphnia
pulex or D. pulicaria, apparently in response to heavy grazing
pressure (Hrba’cek, 1964; Lynch, 1980; Shapiro, 1979; Bandow,
1980) . This phenomenon occurs on a wide variety of lakes (Shapiro,
1979), and Lynch (1980) substantiated the fact that the large
matted colonies of Aphanizomenon appears when D. pulex became
abundant, and disappeared when the large grazers were eliminated by
fish. Straskraba and Straskrabova’ (1969) likewise reported that
"extraordinarily high numbers of fish (reducing the grazing
population) decreased the Aphanizomenon blooms" in a Czech
reservoir. : ‘

But "flake" blooms of A. flos-aquae are not inevitable with
abundant large Daphnia.. Lynch (1980) found that "flake" blooms
occurred only when the lake bottom was oxygenated. Shapiro (1979)
showed that this was the case in a wide range of lakes: both large
daphnids and oxygenated hypolimnia were necessary for such a bloom.

This, then, is a special case in which increased grazing by large
zooplankters actually promotes nuisance algae blooms. There is yet
another complication with Aphanizomenon blooms: since the "flake"
or "grass-blade" form is clumped, water transparency in a lake
usually increases rather than decreases. This leads to the paradox
of high algae and chlorophyll a levels, but clear water at the same
time. Edmondson (1980) noted that when large colonies of
Aphanizomenon . and Anabaena formed in Lake Washington in the
pr2sence of large Daphnia, the water "looked crumby but clear”.
While Lake Washington was enjoying the clearest water ever
recorded, residents on the downwind side of the lake. were
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complaining about the huge matted colonies of blue-green algae
(Litt, UW, pers. comm.; Shapiro, 1979). Because of this problen,
Shapiro cautloned agalnst using any technigue to increase large
Daphnia in a lake unless it could be ascertained that Aphanizomenon
would not become dominant.

Grazing After Fish Are Restocked - Figure 1 shows that when trout
are restocked in a rotenoned lake, the large grazers that developed
in the absence of fish are again cropped back. Additionally,
Figure 10 shows that when the large plankters are cropped back, a
reduction in grazing can be expected, since the small grazers are
less efficient at filtering algae. This should lead to an increase
in algae. :

There 1s a great deal of literature suggesting that when trout or.

other planktivorous fish are introduced into a formerly fish~free
environment dominated by large grazers, the following things
happen:

1) large grazers are reduced, or even eliminated entlrely,
2) small grazers take their place, ’

3) grazing on algae is reduced as a result . and

4) algae levels increase, often dramatlcally.

Evidence comes in part - from enclosure experiments where
planktivorous fish have beén added to plastic bags suspended in
lakes. Lynch and Shapiro (1981) demonstrated that algal biomass
increased and transparency decreased as they added more
planktivorous fish to enclosures containing Daphnia (Figure 12).
Andersson et al. (1978) also noted dramatic increase in .algae when
they added fish to enclosures in two Swedish lakes (Figure 13).
Since they used fish that were both planktivorous and benthivorous,
some of the increased algae was due to higher phosphorus levels.
In both of the experiments above, the algae produced. in the
presence of fish were mostly edible blue-greens.

Similar studies in natural, whole-lake situations are rare. While
a number of authors have . investigated the effect of trout
introductions on grazer populations in fish-free lakes (Kitchell
and Kitchell, 1980; Anderson, 1972; Galbraith, 1967; 1974), almost
none have extended their studies to include the phytoplankton.

Medical Lake in eastern Washington is an exception, with the fish,
zooplankton, and algae extensively studied 'since 1974 (Scholz et
al., 1985; Mires et al., 1981; Knapp and Soltero, 1983; Soltero et
al. vl981). Medical Lake was treated with alum in 1977 to reduce
phosphorus levels and clear the lake of nuisance algae. The lake
responded with a change from blue-green to green algae, reduced
algae levels, greater water clarity, and a predominance of large
Daphnia pulex. The enhanced water quality prompted WDW to stock
the lake - which prev1ously could not support trout - with rainbow
fingerlings beginning in 1978. These trout began feeding almost
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exclusively on the large Daphnia population. From 1978 to 1981,
the average size of D. pulex decreased from 2.3 to 1.0 mm due to
size selective predation by all age-classes of trout. Figure 14
displays the changes in standing crop of D. pulex and phytoplankton
in relation to the rainbow trout population. Daphnia abundance was
clearly related to the numbers of trout in the lake, steadily
decreasing through 1981. Consequently, algae levels rose. These
changes were almost certainly due to the reduction in grazing since
phosphorus levels were relatively constant during this period.

Both the enclosure experiments and the studies on Medical Lake
compared algae levels in a fishless environment with algae levels
after fish stocking. Collectively, these studies suggest that a
lake stocked with trout or any other plantivorous fish will contain
more algae than the same lake without fish.

The situation 1is somewhat different in most rotenoned Washington
lakes, which have been routinely stocked for many years with a
fairly uniform number of trout. The lakes are fishless for only
about 5-8 months following rotenone, at which time fingerling trout
are restocked, generally at the prerotenone levels. Although it is
logical to assume that algal abundance would return to the pre-
rotenone level in such a case, no studies have actually addressed
this question. Shapiro and Smeltzer (1982) did examine a somewhat
analogous situation on Clear Lake, Minnesota: the lake was poisoned
with toxaphene and responded with slightly increased transparency.
The year after treatment, Clear Lake was restocked with both
planktivorous and bottom feeders and clarity was reduced to about
pretreatment levels (Figure 15).

Figure 16 shows that virtually all zooplankton and residual trout
are killed by the rotenone treatment. Shortly thereafter, an algae
bloom occurs owing to some combination of decreased grazing and
increased phosphorus levels. This bloom subsides in the winter.
Zooplankters then recover to at least their former levels of
abundance; grazing itself increases due to the large, more
efficient grazers that dominate while fish are absent. As a
consequence, algal abundance decreases to some level that is lower
than before " (i.e., when fish are restocked in the lake at
prerotenone levels). They crop back or even eliminate the large
grazers that developed in their absence, and the zooplankton
community returns in number and kind to the prerotenone state. As
a consequence, algae levels increase to thelr prerotenone state,
negating any short-term water quality benefits that might have
occurred while fish were absent. (Since the fish~free period
generally runs from late fall through. early spring - a time of
normally low algae and grazer levels - actual decreases 1in algal
abundance may be unnoticeable, if they occur at all).

In Figure 16 is was assumed that the only fish in the lake were
stocked trout, although this is not the case; both target and non-
target species share the lake with trout and are killed along with
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them by rotenone. Many of these other fish are planktivorous,
including yellow perch and sunfish which selectively feed on large
grazers in much the same way as trout. Unlike the trout, which are
stocked again the following spring, these other species must either
repopulate the lake from survivors or be illegally reintroduced.
In either case they do not usually reach their prerotenone levels
of abundance for several years. If these target fish are highly
planktivorous, it can be hypothesized that predation on the grazers
will be somewhat reduced during this period, with trout the only
important planktivores. If this hypothesis is correct, the net
effect would be reduced algae levels when compared to the
prerotenone years, during which time the total planktivore
population was higher. There is no evidence in the literature to
either support or refute this hypothesis. It is equally possible
that trout alone could decimate the large grazers, even in the
absence of other planktivorus fish.

Zooplankton

Short Term Effects - Table G displays the results of biocassays
performed on various zooplankters. The cladocerans ("water
fleas"), especially Daphnia, are well represented in the tests.

While the 48-hour LC50’sS for cladocerans range widely from 0.01 ppm
to 0.57 ppm, most are within the range 0.1-0.5 ppm of formulation.
LC50’s for the copepod Cyclops are somewhat lower, between 0.10 and
0.22 ppm. Based on laboratory findings, at least 50% of the
cladocerans and copepods could be expected to die from exposure to
the rotenone concentrations commonly used in fisheries work (0.5
ppm and up).

The effects of rotenone on the two other major components of the
zooplankton community, rotifers and protozoans, have not been
studied in the laboratory.

There 1is almost unanimous ' agreement among researchers. that
rotenone’s immediate effect on the zooplankton is catastrophic.
Table H shows the results of nineteen studies in lakes and ponds
where zooplankton abundance was recorded before and shortly after
(within four days in 12 of the studies) treatment. In 17 of the 19
cases, the immediate reduction in total numbers of mid-water
zooplankton was between 75 and 100%. In 16 cases, the reduction was
between 95 and 100%.

In the other two cases there was no reduction at all due to
rotenone; in one of these (Libey and Holland, 1280), the very light
dosage (0.1 ppm Noxfish) probably accounts for the absence of a
zooplankton kill. This concurs with the bulk of laboratory
bioassays cited above, which show that cladocerans and copepods
(the important plankters in Libey and Holland’s ponds) generally
require more than 0.1 ppm to kill 50% of the population in 48
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hours. Libey and Holland’s research is interesting in that it is
one of the few reported cases where rotenone was used to purposely
poison zooplankton; the authors wished to starve a stunted bluegill
population by reducing the plankters.

The results of the other study in which there was no zooplankton
kill (Wollitz, 1962 on West Pond, Montana) are difficult to
explain, especially since the same author noted a 98% reduction in
the similarly treated nearby Middle Pond (Wollitz, 1962).

Zooplankters feel the effects of rotenone shortly after
application: Kiser et al. (1963) made tows every 15 minutes on
Silver Lake, Washington, during the day it was treated, noting a
34% decrease in plankton counts within 30 minutes after treatment
began. The greatest reduction in total zooplankton counts came
between 15 minutes and one hour after treatment began, a reduction
of 70%. '

Susceptibility of Different Species - While virtually all plankters
are affected by rotenone, some are more tolerant than others.

There 1is general agreement that the planktonic crustaceans,
especially the cladocerans, are the group most quickly or
thoroughly eliminated (Anderson, 1970; Bandow, 1980; Hrba’cek and
Novotna’-Dvora‘’kova’, 1965; Hongve, 1977; Neves, 1975; Smith, 1940;
1941; Wollitz, 1962; Brown and Ball, 1943a; Almquist, 1959; and
Hooper, 1948). Almguist (1959) ranked various plankters according
to their sensitivity to rotenone in Lake Erken, Sweden, and found
that among the ten most sensitive, eight were cladocerans and two
were rotifers. Diaphanosoma and Daphnia required the lowest
exposure (all died between 30 minutes and two hours in 0.5 ppm
formulation) of all test animals. Almquist found wide differences
in tolerance even among the cladocerans, however; Alonella and
Pleuroxus withstood 1.5 ppm and 2 ppm Pro-Noxfish for up to 8
hours, and Alona was one of the most tolerant of all 44 organisms
test, requiring seven hours in 4.5 ppm Pro-Noxfish for a 100% kill.
Kiser et al. (1963) reported these same three genera resisting
rotenone in Fern Lake, Washington, though habitat within the lake
may have contributed. And Bosmina remained present in the open
water of Silver Lake, Washington after treatment far longer than
Daphnia or Holopedium (Kiser et al., 1963).

Rotifers are generally considered to be more tolerant of rotenone
than the cladocerans or copepods. Keratella has been singled out
as highly resistant by several authors (Bandow, 1980; Almquist,
1959; Anderson, 1970; Smith, 1940; 1941; Walters and Vincent, 1973;
Neves, 1975), along with Conochilus (Neves, 1975; Smith, 1941;
Almquist, 1959). : '

Susceptibility According to Habitat - Sensitivity to rotenone
apparently varies not only to the species of plankter, but with the
habitat type within the lake as well, though only one study has
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adequately addressed this question. Kiser et al. (1963) separately
sampled three different habitats in Fern Lake, Washington: the
open water, the margin between the brush and open water, and the
shallow weedy shoreline. Immediately after treatment they noted
that the reduction in total zooplankton counts was most severe in
open water and least severe in the weedy shoreline. The margin was
intermediately affected.

Naturally, as each habitat supports a different assortment of
plankters, it could be concluded that these results were mostly due
to the varying sensitivities of the species involved rather than
the habitat. But a few plankters in Fern Lake, such as the
cladoceran Alonella and the rotifer Chydorus sphaericus, live in
all three habitats, and they suffered greater losses in the open
water than in the weedier areas.

It is well documented that vegetation and heavy organic debris
detoxify rotenone, and the Fern Lake researchers suggested this as
a reason why the weedy area plankters were somewhat less affected.
They also admitted the possibility that the inaccessible brushy
regions weren’t as well dusted with rotenone. All other field
studies have confined themselves to open-water sampling, or failed
to break down their results by habitat type.

Long Term Effects -~ Recovery - Although they are drastically
reduced immediately following rotenone treatment, zooplankton
communities do recover in almost all cases. Even in those lakes

where not a single living plankter appeared in the post-rotenone
samples, enough escaped or survived treatment to eventually
repopulate the lake.

As previously noted, some plankters escape treatment in densely
weeded areas where rotenone is quickly detoxified (Almguist, 1959;
Kiser et al., 1963). Others may survive simply by virtue of their
tolerance to rotenone. Certain plankters may survive by means of
parthenogenetic summer eggs and tough ephippial eggs which are
unaffected by rotenone (Bandow, 1980; Anderson, 1970; Kiser et al.,
1963) . Both cladocerans and cyclopoid copepods produce ephippial
eggs, which lie dormant in the lake sediments throughout the
winter. They are normally produced in the late fall, but
unfavorable environmental factors may stimulate early production.
Kiser et al. (1963) observed female cladocerans with early
ephippial eggs, and suggested that it was the rotenone that acted
as this unfavorable factor. Finally, it has been suggested that
zooplankton for repopulation may also come from other nearby bodies
of water (Hrba’cek et al., 1961; Kiser et al, 1963), though this
has never been documented in rotenoned lakes.

In most lakes there is a period following the rotenone treatment
during which plankters (at least crustaceans) are scarce or absent
from tow samples. Table I shows the results of 15 studies where
the long-term effects of rotenone on zooplankton were recorded. 1In
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11 of these investigations, there were sufficient data to establish
the length of time following treatment that plankters were absent
from open-water tows.

In two examples, some crustacean plankton was always present in tow
samples, but these appear to be special .cases: Neves (1975)
poisoned only an isolated cove within a lake, and immigration from
the non-treated areas took place immediately following treatment;
and Brown and Ball (1943a) observed an unusually short toxic period
of seven days, possibly accounting for the continued presence of
plankters in small numbers.

In the other nine cases, cladocerans and copepods were entirely
absent from open- -water tow samples from two weeks to as long as
nine weeks.

Considering first the four lakes in which crustacean plankters
remained absent for the longest time (Serns, 1979; Anderson, 1970;
Smith, 1940): '

Serns found no crustacean plankters for five months and nineteen
days following treatment in Bug Lake, Wisconsin: The lake was.
toxic to fish, however, for at least five months and twenty days,
possibly as a result of the heavy dosage (2.5 ppm Pro-Noxfish).

It is somewhat more difficult to understand the other three lakes
where the crustacean-free period lasted from six to nine months
(Smith, 1940; Anderson, 1970). While dosages were somewhat higher
(0.75 ppm-1.33 ppm) than the bulk of the lakes studied, Bandow
(1980) and Hoffman and Olive (1961) saw crustaceans much sooner
after wusing 3 ppm and 1 ppmn. Sampling bias may be partly
responsible in the example of McCormick Lake (Smith, 1940); tows
were made for only two months following treatment with rotenone,
after which there was a seven-month period when no samples were
taken. In the case Anderson’s (1970) two lakes, the extremely long
absence of crustacean plankton (6-9 months) may well be due to the
oligotrophic nature of the high mountain lakes involved. Anderson
(1972) and Wrenn (1965) pointed out that plankton recovery was
slower in the relatively sterile alpine lakes than in nutrient-rich
lowland lakes.

For Washington’s rehabilitated lakes, the best estimate of this
crustacean-free period probably lies between two and twelve weeks,
the range of the other five studies (Kiser et al., 1963; Hrba’cek
and Novotna’~Dvora‘’kova’, 1965; Bandow, 1980; Smith, 1941; and
Hoffman and Olive, 1961).

Since cladocerans and copepods are the plankters that juvenile
trout eat most frequently, this period when they are virtually
absent from open water may have important management implications
in cases where restocking is planned shortly after treatment.
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Generally, this is not the case in Washington; 78% of the lakes in
the program have been treated in the fall and restocked no sooner
than five months later. On several cases crustacean plankton
reappeared before the lakes were nontoxic to fish.

Factors Affecting Recovery of Different Plankters - Once plankters
reappear, the community begins to rebuild itself, eventually
returning in most all cases to prerotenone levels of abundance and
diversity. But just as the various plankters respond differently-
to rotenone when it is applied, they also recover at different
rates.

Anderson (1970) stated that the speed of recovery for different
plankters was likely related to four factors:

1) Susceptibility to rotenone . Most researchers found that the
plankton groups most tolerant of rotenone recovered the
quickest. Rotifers usually reached prerotenone levels of

abundance before the cladocerans and copepods. In Smith Lake,
Colorado, rotifers recovered after five months, while the
crustacean plankters required six months (Hoffman and Olive,
1961). Hrba’cek and Novotna’-Dvora’kova’ (1965) found
cladocerans and copepods recovered between 3 and 4 months
after poisoning, while protozoans and rotifers reappeared in
just 1 - 2 months. In the alpine lakes studied by Anderson
(1970), the rotifers had completely recovered to their former
levels of diversity and abundance in 11 - 12 months, a full
two years before the crustaceans did so.

2) Time of reproduction . Andérson (1970) states that rotenone is
more devastating to those species which have not reached
reproductive maturity by the time rotenone is applied. This
was the case with the copepod Diaptomus sicilus in a Canadian
alpine lake, and it was the last species to recover. In
general, the major reproductive peak occurs in the spring,
with a lesser one in the fall:; but the precise timing depends
on the species and water conditions (Arni Litt, UW, pers.
comm. ) .

3) Ability to form resistant stages . All cladocerans, copepods,
and rotifers have the ability to form ephippial or other over-
wintering eggs; in Washington this occurs mostly in the
eastern half of the state where ice cover forms (Arni Litt,
UW, pers. comm.). Anderson (1970) suggests that such eggs -
depending on when in the fall a particular species produces
them - could resist the poisoning and aid in recovery. Bandow
(1980) suspected that this ability allowed Daphnia to become
the dominant crustacean in a rotenoned lake. Brynildson and
Kempinger (1973) stated that the "comeback" of Daphnia in a
Wisconsin lake after rotenone may have been partly due to
ephippia which hatched the following spring. '
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Partial Recovery - Long before zooplankton communities recover to
the point where all species have reappeared in their approximate
prerotenone levels, there is usually a point when most species are
present in large numbers.

anderson (1970) noted that even in the extreme case of alpine lakes
where complete recovery took as long as three years, most species
of crustaceans had reappeared within 10 months of poisoning. More
relevant to Washington’s lowland lakes is the case of Fern Lake,
Washington, where although complete recovery in all habitat types
took 17 weeks, the authors suggested that zooplankton populations
had recovered to the point where trout could be restocked in just
9 - 10 weeks (Kiser et al., 1963). Two weeks later, all open water
crustaceans had returned to prerotencne levels. WDW restocked Fern
Lake 37 days after poisoning, and the authors suggested that this
may have been about five weeks too soon in view of the reduced
plankton levels. ‘ '

During this period to complete recovery, there are often shifts in
the zooplankton community structure. One of the more gross changes
is the temporary disappearance of the cladocerans and copepods,
while rotifers dominate. Researchers have reported other unusual
changes in the community during recovery as well: Neves (1975)
noted minor rotifer "blooms" during recolonization of a poisoned
lake cove, probably due to lake of competition and/or low predation
by grazing plankters. Walters and Vincent (1973) also observed a
temporary rotifer "bloom" during recovery. Patricia and Celestine
lakes saw an increase in small sized cladocerans (Anderson, 1970).
In Fern Lake, a number of weedy shoreline plankters unaffected by
rotenone invaded the open-water areas of the lake and became
dominant for about nine weeks. By the twelfth week they had been
gradually excluded by the original open-water species which had
returned. (Kiser et al., 1963). Anderson (1970), though he did
not sample the shoreline areas, noted "new" species in the open-
water tows on Patricia and Celestine lakes, and suggested that the
same invasion by resistant shoreline plankters seen in Fern Lake
was occurring. Neves (1975) did not observe this phenomenon in a
treated cove, claiming that quick recolonization from outside by
open-water plankters was the reason.

These changes in community structure were all relatively minor and
temporary. - ~Probably the most commonly observed change in
zooplankton community structure during the recovery period is the
dominance of large sized cladocerans after treatment (Bandow, 1980;
Hrba’/cek and Novotna’/-Dvora‘kova’, 1965; Anderson 1970; Gustafson
et al., 1981; Serns, 1979; Walters and Vincent, 1973; Stenson,
1972). All of these authors trace this change to the absence of
predatory fish in the lake following poisoning. And, depending on
whether or not fish are restocked, the change can be temporary oOr
permanent. ‘



Complete Recovery - Zooplankton recovery times in 15 test waters
are shown in Table I. Figure 17 graphically displays the recovery
time on most of these waters. For interpretation of these results
"complete recovery time" means the time it took for all, or nearly
all, of the important or sampled elements of the zooplankton
community to reappear and reach approximate prerotenone levels of
abundance. In a number of instances, the authours have actually
stated a recovery time. 1In others, recovery time must be inferred
from the data. 1In both cases, there are three main reasons why the
assignment of recovery times must be regarded as an approximation.
1) the zooplankton comunity cannot be expected to reappear exactly
as before rotenone, there is often a characteristic shift to larger
sized plankters in the absence of predatory fish; 2) some studies
identified samples down to the generic or specific level, while
others used only broad taxonomic descriptions such as "rotifers"
and protozoans". This makes it difficult to establish when
diversity has been restored; and 3) zooplankton counts vary widley
from year to year, making it difficult to establish prerotenone
levels of abundance to use as a "yardstick" in measuring recovery.

The most reliable studies are those in which plankters were
identified to the generic or specific level, and samples were
collected regularly for several years prior to treatment. Table T
shows that recovery times ranged from "immediate" to three years,
and in one case (Bandow, 1980) recovery was not complete when the
study ended two years after rotenone treatment.

Carls Lake, Minnesota (Bandow, 1980) appears to be a special case:
while calanoid copepods never returned to full abundance even after
two years, there was a sharp increase in total standing crop of
zooplankton, mostly Daphnia. Several other factors confuse the
picture on Carls Lake: the severe winterkill that disrupted the
ecosystem not long before treatment, the double application of
rotenone at high dosage (3 ppm), and the post-rotenone introduction
of at least six species of fish. The combined effect of these
unusual variables makes it hard to draw conclusions on recovery
~time from this study. Other special cases include Libey and
Holland (1980), where the small dosage never affected zooplankton;
Wollitz’s (1962) treatment of West Pond, an anomaly; and Neves
(1975), where the poisoned cove recovered completely in one week
due to rapid immigration from the untreated areas.

The remaining examples all show recovery times ranging from two
months to three years. Where complete recovery required two and
three years (Emmaline, Celestine and Patricia Lakes), it is perhaps
relevant to note that all three are oligotrophic alpine lakes.
Zooplankton in sterile alpine lakes require an unusually long time
to recover (Anderson, 1972; Wrenn, 1965) . Moreover, Anderson and
Wrenn were only able to sample the lakes one and two months prior
to poisoning, making it difficult to say with certainty what the
prerotenone abundance levels were.
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Complete recovery based on the remaining studies required anywhere
from two to twelve months. Eliminating the two month example
(Brown and Ball, 1943a) due to their unusually short toxic period
for fish, we are left with a range of four months to a year. The
most thorough of these studies (based on the three criteria
discussed above) is that of Kiser et al. (1963) on Fern Lake,
Washington, where recovery took 17 weeks.

In several lakes cited in Table I, zooplankton populations not only
recovered to previous levels after poisoning, but exceeded them
(Hongve, 1977: Anderson, 1970; Woolitz, 1962; Serns, 1979).

Since none of these four studies involved extensive sampling before
treatment, the "increased" populations may not be significant.

. The dosages used in most of the studies cited are somehwat less
than the statewide average applied in Washington (1.23 ppm) .
Considering the effect of different lake chemistries on rotenone as
well as other variables, it is impossible to say whether or not
this is significant. There is no apparent correlation between
dosages shown in Table I and the corresponding times to complete
recovery. There is also no clear correlation between recovery and
either pH or water temperature, despite the fact that a wide range
of pH’s (5.9-8.9) and water temperatures (38° - 82°F) are
represented in the test waters. Two other authors have made
statements on recovery time that should be mentioned here, although
their data cannot be included in Table I: Schnick (1974), after a
review of the literature, concluded that "recovery takes from 1.5 -

3 months"; possibly referring to what has been described as
"partial" recovery, where most but not all the important elements
of the plankton community have reappeared. Galbraith (1974),

reviewing unspecified data on Michigan trout lakes, stated that
after rotenone "it takes at least on full year before the Daphnia
Spp. regain their original densities.™

Brynilsdon and Kempinger (1973) recommended speeding up the
recovery of Daphnia, Leptodora, and Holopedium 1in rotenoned
Wisconsin lakes by stocking these crustacean plankters shortly
after treatment.

Disappearance of Species/Appearance of New Species - Table I shows
that in four of ten cases, a species observed before treatment
failed to reappear in samples taken after recovery was "complete.
In three of these cases (Anderson, 1970; Brown and Ball, 1943a,
Serns 1979), the authors suggested that incomplete sampling or the
sporadic prerotenone appearance of a rare specimen was responsible
for the "disappearance". In the other example, the disappearance
of Daphria cucullata from a pond was traced to exclusion by a
larger daphnid in the absence of fish (Hrba’cek and Novotna’-
Dvora’kova’, 1965).
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None of the 42 crustacean species in Fern Lake, Washington,
disappeared permanently after rotenone (Kiser et al.,1963), and the
authors believed that complete elimination of a species was "quite
unlikely".

The post-rotenone appearance of species never collected before
treatment was common, although not explained or assigned any

significance. Kiser et al. (1963) observed that after treatment,
many weedy-shoreline plankters invaded open-water areas where they
were normally never found. Had the authors not towed the

shoreline, these species may have been classed as "new" to the
lake. Undoubtedly this happened in some of the other lakes, where
shoreline habitat was not sampled. And, since only two of the
other studies where "new" species were reported included more than
a few months sampling before treatment (Hongve, 1977; Hrba’cek-
Novotna’~-Dvora’kova’, 1965), the chances of missing a seasonal or
sporadic species were very high in the others.

These 'new" species appearing after rotenone never attained
dominance in any of the lakes cited in Table I. Even in the case
of Fern Lake, Washington, the large population of cladocerans which
dominated nearby untreated lakes never gained a foothold in Fern
Lake during its recovery (Kiser et al., 1963).

Fish/Zooplankton Interactions - Because fish are consumers near the
top of a.lake’s trophic "pyramid", and because they make up only
a small percentage of the lake ecosystem’s total matter and energy,
they were once considered unimportant in controlling the plankters.
There is now a great deal of evidence to the contrary; fish can and
do have a dramatic influence on the zooplankton in a lake (Shapiro
et al., 1975; Brooks and Dodson, 1965; Galbraith, 1967).

While =zooplankton is not always the main food source for fish
(Walters and Vincent, 1973), almost all fish in a lake eat
zooplankton to some degree, at some life stage. Naturally, a great
deal depends on the lake itself and what other foods it supplies.
In general, though, rainbow trout of all ages and sizes often feed
heavily on zooplankton in Washington lakes, mainly cladocerans and
copepods (Wydoski and Whitney, 1979; Carlander, 1969). They do not
feed indiscriminately; instead, they individually select and eat
only the largest cladocerans (Galbraith, 1967).

It 1is not only trout that feed on =zooplankton; many of the
nonindigenous fish that are targeted for eradication from
Washington’s trout-only lakes also eat Zooplankton. Yellow perch
(Perca falvescens) of all ages and sizes prey on cladocerans and
copepods (Wydoski and Whitney, 1979; Serns and Hoff, 1984) and have
been called one of the most important zooplanktivores in the U.S.

(Shapiro et al., 1975). Like trout, they select and eat only the

largest planhkters (Galbraith, 1967; Serns and Hoff, 1984).
Zooplankton is important in the diet of fathead minnows (Pimephales
promelas) (Serns, 1979; Galbraith, 1974), pumpkinseed sunfish
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(Lepomus gibbosus) (Beard, 1971) and bluegills (Lepomis
marcochirus) (Krska and Applegate, 1984; Shapiro et al., 1975).
Even the brown bullhead catfish (Ictalurus nebulosus), commonly
regarded as a bottom feeder, is often planktivorous (Bandow, 1980),
at times exclusively so (Olson and Koopman, 1976).

When all, or almost all the fish in a lake are eliminated,
zooplankton return in large numbers within 2 - 10 weeks of
treatment, usually closer to three weeks and major shifts in
dominance during the period of time before fish are reintroduced to
the lake may reasonably be expected.

In some lakes, when the period of time before reintroduction is
very short (e.g., 37 days), nothing of importance happens (Kiser et
al., 1963). But most lakes in Washington treated with rotenone in
the fall or winter are restocked the following spring, allowing at
least five months during which the zooplankton suffer no predation.

Many investigators have reported a shift in community structure,
with some plankters exceeding prerotenone levels while others
decline. By far the most common shifts observed were: '

1) an increase in the number'of large sized plankters (usually
Daphnia), with a corresponding decline in the smaller-sized
plankters that cannot graze as effectively; and

2) an increase in the body size of the already exlisting
plankters.

Table J show the results on six lakes where body-size relationships
were examined following rotenone and fish stocking. In all six
lakes, large-sized plankters became dominant when fish were absent
Oor scarce; and in the two studies where carapace lengths were
measured, the small-sized plankters increased in body size (this
may have occurred in the other four lakes as well). In all but one
lake, the large-sized species that became dominant already existed
in the lakes but in smaller numbers; in Lake Sarvsjon, however, the
new dominant plankters had never before been recorded in the lake
(Gustafson et al., 1981). In all six cases, the authors stated
that these shifts were due to the absence of predation by fish
following rotenocne. And in every case, the zooplankton community
reverted to the "normal" prerotenone conditions once fish were
restocked and firmly established again.

Stenson (1972) confirmed these results with an experiment in eight
Swedish lakes, which all contained the same types of fish and
zooplankton. He poisoned four with rotenone and left the other
four as untreated "controls". Zooplankton began to repopulate all
four rotenone lakes, and Stenson stocked new fish species (trout)
in three of them, while allowing the original species (perch, pike,
eels) to re-enter the fourth. During the experiment, predation was
low in the newly stocked "trout" lakes, but quickly returned to
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normal in the lake repopulated by the original fish. Stenson’s
" results are shown in Table K. oo

Table K. The effects of rotenone treatment and subsequent fish
stocking on the kinds and size of zooplankton in eight
Swedish Lakes. Source: Stenson, 1972.

Treatment Increase in Body Shift in Dominance
Size of Plankters to Large Cladocerans

_..__.....——.._-..__-.-_.._._..-....—..._._........._._._—...-.__._....._..___.__._...—.......——..--.—.——...—..———.—.—-—.._....._

NO ROTENONE (Control)

-Original fish species NO NO

-High predation (4 lakes)

_—-—.—-......—....—.__.a__......-...._._...—..._...__..-.....-....—_......__.._._...._._.—._..—......._._.....—..._—......—.....—...._..__..._

ROTENONE

-Original fish species
re—-entered NO NO

-High predation (1 lake)

ROTENONE
-New fish species stocked

-Low predation (3 lakes)

Clearly, the scarcity of fish in the newly stocked trout lakes
allowed the larger cladocerans to become dominant, and also allowed
the mean body size of the cladoceran Bosmia to increase. Most
interesting are the results in the single rotenoned lake where the
original fish repopulated after rotenone; the zooplankton community
recovered and was identical to the nonrotenoned lakes. These
results concur with those in Table J where communities reverted to
their prerotenone state once fish were restocked. Stenson showed
conclusively that it was the lack of predation, not the rotenone
that changed the community.

In general, large daphnids are not found in lakes with many
planktivorous fish, although there are some notable exceptions,
i.e., Lake Washington (Edmondson and Litt, 1982).

There isAconcern that when trout are stocked following poisoning

that not only will they return the zooplankton community to former
levels of abundance, but that they will eventually eliminate it.
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When trout are stocked in formerly fish-free lakes, for example,
dominant plankters are often dramatically reduced or eliminated.
Anderson (1972) stocked trout in an alpine lake that had never
supported a fish population before, and with no other food source
available (e.g., benthic invertbrates), they eliminated the
dominant plankters within two to six years. When rainbow trout
were introduced into Medical Lake, Washington, they 1largely
eliminated the dominant plankter, Daphnia pulex. Knapp and Soltero
(1983) felt that this 1loss of a preferred food item would
jeopardize the newly established trout fishery.

Most of the Washington state lakes treated w1th rotenone have been

routinely stocked with fingerling trout for many years and poisoned
at more or less regular intervals. To be considered for lake
~rehabilitation, the lake must provide good fingerling survival and
growth as indicated by yearly gill-net sets and creel checks. This
empirical evidence suggests that trout stocking at historical
levels does not reduce zooplankton to the point where trout growth
is affected.

There 1is also no evidence in the literature to suggest that
continued stocking in traditionally successful trout waters
eliminates zooplankton as a food source. Galbraith (1967) reported
that trout reduced the Daphnia pulex population in Sporley Lake,
Michigan, to the point where the fishery deteriorated. Further
research, however, showed that perch, fathead minnows, and smelt
were lmportant contributors to the Daphnia decline; even when trout
stocking was discontinued for four years, the daphnid populatlon
stayed at very low levels. Only after the perch, fathead minnows,

and smelt were poisoned with rotenone did Daphnia return
(Galbraith, 1974).

A similar situation developed on Nebish Lake, Wisconsin, after
rotenone; while both hatchery trout and yellow perch preyed heavily
‘on large Daphnia, it was the exploding perch population that
eventually overgrazed the lake (Brynildson and Kempinger, 1973).

The data from lakes with established fish populations at the time
of rotenone treatment (Kiser et al., 1963; Anderson, 1970; Hrba’cek
and Novotna’-Dvora’kova’, 1965; Walters and Vincent, 1973; Stenson,
1972) show that when fish are restocked, the zooplankton community
returns in kind and number to the prerotenone‘state.

In those lakes which contain planktivores other than trout (such as

yvellow perch, fathead minnows, bluegills, etc.), it is reasonable
to assume that even after restocking with trout, there could be a
net decrease in predation on zooplankton due to the absence of the
other planktivorous fish. If this occurred, it would be a
temporary situation, since the target fish populatlons usually re-
establish themselves after a few years. :
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Benthic Fauna

Short Term Effects - Table L displays the results of bioassays
performed on various benthic animals found in lakes and ponds. The
widely cited results of Leonard (1939) have been omitted; in his
tests, Leonard found that rotenone dosages as high as 2 ppm had no
effect on a wvariety of benthic animals, but since that time,
several authors have cast doubt on the quality of his rotenone
formulations (Almquist, 1959; Kiser et al., 1963). Many.of these
studies were performed before the standarization of laboratory
toxicity test (96-hour LC50’s being the current standard), so it is
impossible to perform any meaningful guantitative comparison which
includes all the data. In addition, all of the research except for
that of Zischkale (1952) involved testing of benthic animals in
bare aquariums devoid of any natural substrate. Since Lindgren
(1960) has shown this to be an important, if not overriding factor
in benthic mortality with rotenone, the results cannot be reliably
extrapolated to a real lake environment.

Laboratory tests are not without value since they can be used to
understand the relative susceptibilities of different benthic
animals. Figure 18 broadly groups several types of benthic
animals, giving a rough idea of the varying susceptibility of each
to rotenone. Data are drawn from Table L, utilizing only LC50’s
for exposures ranging from 24 to 96 hours. Some other data from
Table L are included as well, where tests indicated that a
particular concentration killed 50% of the animals; in a strict
sense, these are not LC50’s, though their inclusion here is
justified since they provide extra data.

Figure 18 shows the decapod crustaceans (mostly crayfish) to be the
most tolerant group, followed in descending order by caddisfly
larvae, aquatic snails, and clams, the larval stages of dragonflies
and damselflies, phantom midges, true midges and mayflies. This
figure includes all the important components of lake benthos except
for the oligochaete worms (aquatic earthworms, or Tubificidae),
which have not been tested in the laboratory. True midges
(chironomids) generally make up the bulk of the benthic biomass in
most lakes and ponds (Merritt and Cummins, 1978).

Lindgren’s (1960) laboratory tests showed what an important
influence access to the bottom sediments has on the survival of
benthic fauna exposed to rotenone. Figure 19 shows clearly that
when midge larvae had access to the bottom muds, they sustained
only a 50% mortality when subjected to a dosage ten times that
which killed all midges in a bare aquarium (3.0 ppm as opposed to

0.3 ppm).

Rotenone’s immediate effect on benthic animals in lakes and ponds
varies, but it does not affect them as drastically as it does
plankton. Table M displays the results of thirteen studies on 23
lakes and ponds; in nine of these, the investigators recorded
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LC 50 (ppm 5% rotenone)
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Figure I Mean LC50's of rotenone formulation for various groups
of lake and pond benthos. Data are drawn from Table 13.
Vertical bars represent the ranqe of LC50's found in
the literature. Numbers in parentheses renresent the
number of data points (tests) used in computing the
means.
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Figure!9 Effect of bottom muds on the survival
of midge larvae (Chironomus plumosus)
in aguariums subjected to various
dosages of rotenone (ChemFish Special).
Source: Lindgren 1960.
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benthic abundance within three weeks or less of treatment. These
data were either compared with previous bottom grabs in the same
lake, or with untreated "control" waters.

There is no clear correlation between rotenone dosage and the
number of benthic animals lost shortly after treatment. The
factors that most likely influenced the varied results were the
differing environmental conditions (especially the amount of
submerged vegetation and the bottom type) in the lakes and ponds
tested. For example, Houf and Campbell (1977) reported no loss of
benthos following a heavy application of 2 ppm Noxfish, but their
results may be influenced by the fact that their experlmental ponds

were heavily vegetated and had very muddy bottoms. Both these
factors play important roles in detoxifying rotenone and prov1d1ng
a safe haven for benthic animals. The same dosage (2 ppm) in a

similar-sized pond with very little aquatic vegetation destroyed
almost 30% of the benthos when compared with the untreated control
pond (Burress, 1982). Unfortunately, there are not enough
compatible data on these environmental variables from all the
studies to fully explain the different results.

Although. they did not provide enough gquantitative data to be
included in Table M, a number of other researchers have reported
the short-term effects of rotenone treatment on benthos.

Most have reported that rotenone’s impact is mild: Hongve (1977)
stated that benthic insects were not affected by a dosage of 0.5
Pro-Noxfish in a Norwegian lake. Neves (1975) found that most
benthis invertebrates were not distressed by a 0.6 ppm Noxfish
treatment of a lake cove, although some dead mayfly and biting
mldqe larvae appeared 1in subsequent plankton hauls. After
poisoning two Canadian lakes with 0.75 ppm derris, Anderson (1970)
concluded that benthic oligochaetes, dipterans, caddisflies, and
damselflies appeared unaffected by the rotenone; leeches and
snails, however, showed high mortalities. Cushing and Olive (1957)
reported that oligochaetes were not affected by 1.0 ppm derris in
Smith Lake, Colorado,; and that reductions in the midge larvae were
apparent for only three days following poisoning. Wright (1957)
found that 1 ppm Noxfish and Pro-Noxfish did no harm to midge
larvae. Zilliox and Pfeiffer (1960) found that rotenone products
at 0.5 ppm did not adversely affect the fish-food organisms in New
York lakes.

Some authors have reported drastic reductions in benthos following
rotenone: Berzins (1958) found that 0.5 ppm rotenone destroyed
most of the benthos of two lakes in southern Sweden. Oglesby
(1964) reported that a freshwater polychaete, Nereis limnicola, was
almost entirely exterminated following a 0.5 ppm treatment of Lake
Merced, California, with 5% rotenone.

Taube et al. (1954) documented catastrophic reductions of benthos
in five Michigan lakes treated with Fishtox (a 5% emulsifiable
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liquid) and one treated with 1.7 ppm emulsifiable rotenone. Even
a year after treatment, benthic animal density was down 73% - 97%
over previous levels. These lakes remained toxic to fish for an
unusually long time - between 19 and 33 months after treatment,
even though qualitative tests for rotenone proved negative. The
authors therefore suspected that their emulsions had been
contaminated with a chemical dispersing agent which was responsible
for both the extended toxicity and the benthic kill.

Susceptibility of Different Benthic Animals - Laborartory tests
have shown that certain types of benthic fauna are more tolerant of
rotenone than others. Research 1in the field has generally
corroborated these laboratory findings. Crayfish proved highly
tolerant in Bluewater Lake, New Mexico (Huntingdon, 1956), where
they were not affected by 1.5 ppm. Lindgren (1960) noted that the
genus Cambarus was very tolerant of rotenone, and Boccardy and
Cooper (1963) reported that crayfish were unaffected in a
Pennsylvania stream treated with rotenone. Dead crayfish were
reported on the bottom of Liberty Lake, Washington following
rotenone treatment (Funk, WSU, pers. comm. ) . '
Gastropods (snails), also shown by laboratory tests to be
relatively tolerant, have survived rotenone treatments in the field
as well (Smith, 1941; Hooper, 1948; Serns, 1979), although Anderson
(1970) reported that snails were among the first benthic animals to
show high mortality following a 0.75 ppm treatment in a Canadian
lake, and Smith (1941) noted disappearance of a snail, Campeloma
decisum, after rotenone.

While no laboratory tests are available for comparison,
investigators in the field have usually cited oligochaetes (aquatic
earthworms, Tubificidae) as being among the most tolerant benthic
organisms (Cushing and Olive, 1957; Anderson, 1970; Hooper, 1948;
Serns, 1979; Bandow, 1980; Lindgren, 1960), with only one author
reporting large kills of oligochaetes following rotenone poisoning
(Wollitz, 1962).

Mayfly larvae, shown in laboratory tests to be very sensitive, have
been. killed in large numbers in several lakes (Neves, 1975;
Burress, 1982) while other benthic animals were unaffected or
reduced at a lesser rate. Midge larvae (chironomids) also proved
fairly sensitive to rotenone in the laboratory (see Figure 18), and
field investigators have reported heavy losses following lake and
pond treatments (Bandow, 1980; Wollitz, 1962). Anderson (1970),
Serns (1979) and Taube et al. (1954), did note that dipteran larvae
(largely midges) were unaffected by rotenone treatments.

Leeches were not extensively tested in the laboratory, but Brown
and Ball (1943a), and Anderson (1970), Smith (1941), Ball and Hayne
(1952), and Meehean (1942) all reported them to be very sensitive
to rotenone.
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The larval form of the phantom midge is unusual for insects in that
it is largely planktonic (Merritt and Cummins, 1978); without the
protection of the bottom sediments, and in view of its relatively
high sensitivity in the lab (see Figure 18), it might be concluded
that they would suffer heavy losses in poisoned lakes. This has
been reported in at least four cases (Ball and Hayne, 19527 Smith,
1941; Meehean, 1942; Taube et al., 1954). The latter authors
recorded an 82% reduction in Chaoborus within five days of
poisoning on a Michigan lake. Contradictory reports have come from
Hongve (1977) and Wright (1957), both of whom noted chaoborid
larvae surviving rotenone treatments in large numbers.

Effects of Insect Emergence - Only one study (Houf and Campbell,
1977) has addressed the direct, short-term effects of rotenone
treatment on the emergence of aquatic insects. These authors found
no differences in emergence patterns between treated and untreated
ponds, and concluded that rotenone at 0.5 ppm and 2.0 ppm did not
interfere with insect emergence.

Long Term Effects - Recovery of the Benthic Community = In the
eleven studies that quantitatively followed benthic abundance over
the long term (i.e., all research cited in Table M except Smith,
1940 and Hooper, 1948), benthos recovered to at least prerotenone
levels of abundance at some time after poisoning. However in one
of these studies (Serns, 1979), "recovery" was somewhat ambiguous;
Serns reported that caddisfly larvae at a shallow-water sampling
site never reached their former levels, but he blamed sampling
variance and subsequent fish introductions rather than the rotenone
itself.

Table M shows the results of six studies in which bottom grabs were
taken often enough to determine how long recovery took. In two
cases (Houf and Campbell, 1977; Smith, 1941), there was never a
reduction in total benthic abundance following poisoning, so

recovery was essentially "immediate". In the remaining four

studies (representing six bodies of water), where between 23% and
71% of the benthic fauna was initially destroyed, recovery took
between 1 and 2 months. Schnick (1974) concurred with this
stating, after a review of the literature to date that: "benthic
organisms reach equilibrium in a few months after treatment”.

In many cases, the benthic fauna not only repopulated the lakes
following rotenone, but their numbers increased dramatically over
pretreatment levels. Table M shows that this occurred in 6 of 10
studies (13 of 18 test waters).

In four of the six studies where benthos increased significantly
(Tuunainen, 1970; Wollitz, 1962; Ball and Hayne, 1952; Walters and
Vincent, 1973), the authors claimed that reduced fish predation was
the overriding cause.
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A loss of predatory fish cannot explain the huge increases noted by
Burress (1982), since his experimental ponds never contained fish.
Burress himself does not venture a guess, but Lellak (1965) has a
hypothesis which may explain the post-rotenone explosion of benthos
when fish are not a factor. While admitting that the increase in
bottom animals in Velka Arazimova was due in part to the
elimination of predatory fish, Lellak claims that the most
important factor was the "rain'" of dead plankton that occurred
shortly after poisoning. On reaching the lake bottom, this formed
a new supply of food for the benthic fauna. Lellak supports this
hypothesis by pointing out that in bottom areas of untreated ponds
closed off to fish, benthic biomass doubled; but in poisoned ponds,
the biomass increased sometimes 50-70 fold, or definitely more than
would be expected as a result of merely removing the fish.

While this nutrient "rain" undoubtedly boosts benthic production,
Walters and Vincent (1973) noted that in Emmaline Lake, Colorado,
this increase was only temporary; the excess of bacteria and
plankton that accumulated there after poisoning was soon depleted
by the growing population of benthic animals.

Disappearance of Species - Smith (1941) reported that the snail
Campeloma decisum never reappeared in bottom grabs on Potter’s
Lake, Canada as long as 11 months after poisoning. In the other
five studies in which data were suitably detailed for analysis
(Houf and Campbell, 1977; Burress, 1982; Serns, 1979; Bandow, 1980;
Tuunainen, 1970), all taxa present before rotenone reappeared in
samples after rotenone.

Effect on Species Diversity - Species diversity has traditionally
been used as a monitor of benthic community stability. ©Pollution
and other environmental disturbances tend to produce a community
that is rich in terms of total benthic abundance, but poor in terms
of the number of species.

Houf and Campbell (1977), Burress (1982) and Bandow (1980) are the
only investigators who have used a quantitative diversity index
(Wilhm and Dorris, 1968) to thoroughly examine the long-term
effects of rotenone on "the species diversity of benthic
communities. Houf and Campbell (1977) reported that neither 0.5
ppm nor 2.0 ppm dosages of rotenone changed benthic diversity (4)
in their experimental ponds. Burress (1982) noted pronounced
reductions in diversity after poisoning ponds with 2.0 and 5.0 ppm
rotenone. Diversity returned to prerotencne levels 69 days later
in the pond given the lighter dosage, but in the heavily poisoned
pond, benthic diversity was still reduced at that time. There was,
however, a '"strong trend toward recovery". Bandow’s (1980) results
are somewhat complicated by a winterkill, . but post-rotenone
diversity on Carls Lake, Minnesota was the same or greater than
" before treatment.
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Changes in Community Structure - In addition to increases in total
benthic standing crop following recovery from rotenone treatment in
several lakes, some investigators have reported increases in the
numbers of particular benthic animals within the community.

Oligochaete worms increased dramatically after poisoning in the
lakes studied by Hooper (1948), Cushing and Olive (1957), Lellak
(1965), and Bandow (1980). In these cases, oligochaete worms were
not initially affected by the rotenone. Wollitz (1962), saw a
doubling of the tubificid worm population in Middle Pond, Montana
even after a drastic initial reduction. In all these cases, the
shift was temporary; populations had restabilized at their former
levels before the studies ended.

Aquatic snails and clams increased in several lakes following
poisoning: Wollitz (1962) reported that the snails Gyraulus and
Lymnaea increased tenfold over prerotenone numbers, while Physa’s
populatlon doubled in a Minnesota lake. Aquatic snails increased
in numbers following rotenone in Potter’s Lake, Nova Scotia (Smith,
1941) . Tuunainen (1970) noted much larger populations of the clam
Pisidium in most of the seven Finnish lakes he poisoned. It is not
clear from the literature whether these shifts to increased numbers
of mollusks were temporary or permanent.

The midge population increased dramatically in the two Montana
lakes studied by Wollitz (1962) and the Czechoslovokian oxbow
poisoned by Lellak (1965). In both these cases, the shifts
appeared temporary. ’

It is tempting to attribute all these shifts in community structure
to rotenone tolerance. Oligochaete worms, snails, clams and
crayfish are. generally regarded as being the benthic animals most
resistant to the poison. It may be hypothesized that these groups
take advantage of the temporary absence of other more sensitive
benthic animals to become dominant. Yet the post-rotenone
dominance of midge populations in some instances (Wollitz, 1962;
Lellak, 1965) does not fit this hypothesis; not only are midges
usually rotenone sensitive in the lab and field tests, but Wollitz
recorded a drastic initial reduction of midge larvae before the
increase. The elmination of predatory fish may at least partially
explain these shifts.

Apart from shifts in numerical abundance of certain benthic
animals, only one other change in community structure has been
observed following rotenone; Walters and Vincent (1973) found that

large-sized midge larvae became dominant after poisoning. This

shift has been attributed to a decrease in fish predation.

Fish/Benthos Interactions - When rotenone was used to eliminate
fish, benthic animals populations increased in most of the test
waters . cited in Table M. Most authors credited the sudden

reduction in fish predation as the main cause. The "rain" of dead
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plankton, bacteria, and epiphyton was also mentioned as a probable
catalyst for short-term benthic increases.

When these increases occur, the standing crop of benthos remains at
the new, higher level if predatory fish are not restocked. This
was demonstrated by Ball and Hayne (1952) when they poisoned Third
Sister Lake, Michigan, and purposely avoided restocking so that
they could follow the effects. They found that the number of
benthic animals doubled; at that point, the benthic community
reached a dynamic equilibrium whose limits were determined by
factors other than fish predation. Annual cycles of abundance were
undisturbed (Figure 20). A doubling of the benthic standing crop
following fish removal was also recorded in experimental enclosures
on a Swedish lake (Andersson et al., 1978).

Walters and Vincent (1973) ran a similar experiment in Emmaline
Lake, Colorado and Figure 20 compares their results with Ball and
Hayne (1952).  They poisoned the lake’s brook trout population and
did not stock fish again until almost four years later, near the
end of the study. Their results were similar to Ball and Hayne’s,
with the benthic population increasing about 3.5 times over
prerotenone levels. These authors found that, in the absence of
fish predation, benthic population regulation at the new, higher
level occurred through density-dependent larval mortality.

When fish are restocked into a lake where post-rotenone benthic
increases have occurred, the benthic standing crop generally
returns to prerotenone levels. ILellak (1965) observed a dramatic
increase in pond benthos following poisoning, but two years later
(after ther gradual introduction of new fish), both the abundance
and biomass of the bottom fauna stabilized within the prerotenone
limits (Figure 21).

In what is probably the best and most detailed of the studies,
Tuunainen (1970) observed a clear relationship between the bottom
animals and fish in seven Finnish lakes; after perch were poisoned
- with rotenone, benthic diversity increased in all the lakes. This
increase was most obvious in the year following poisoning. After
releasing new fish, brown trout (Salmo trutta) and rainbow trout
(Salmo gairdneri),into the lakes, the benthic standing crop
decreased again, although it remained at a somewhat higher level
than before rotenone. Thereafter, benthos increased whenever there
was a decrease in fish biomass; in some cases, this increase was
even greater than the increase just after poisoning. The typical
case of Lake Sahalalmpi is plotted in Figure 21.

While killing all the fish in the test lakes usually resulted in an
increase in benthos, there were important exceptions: Table M
showed that no increases occurred in the lakes studied by Bandow
(1980), Smith (1941), and in one of the ponds studied by Wollitz
(1962) . Whether or not benthos increases following a fish-kill
program depends a creat deal on the types of fish killed and their
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reliance on the lake’s bottom animals as a food source. This
factor may explain why the standing crop of benthos in Carls Lake,
Michigan (Bandow, 1980) was not significantly affected following
rotenone; Bandow reported that the most common fish prior to
poisoning was the black bullhead (Ictalurus melas), and these were
heavily dependent on Daphnia for food.

No such explanation 1is readily apparent for the other two cases

(Smith, 1941; Wollitz, 1962) in which benthos was. unaffected.

There are other factors that may influence the way in which a
benthic community reacts to fish removal; Tuunainen (1970) claims

that lake size alone may be such a factor. With respect to
rotenone removal of fish, he states that "small lakes or ponds with-
quite a small water volume are more susceptible to environmental

changes than large ones". Other limnologists have concurred with
this statement in regard to fish introductions (Li and Moyle, 1981;

Magnuson, 1976). It is probably no coincidence, then, that the two
largest lakes studied (Carls Lake and Potter’s Lake) showed no
long-term changes in the benthic standing crop after fish were
killed with rotenone; much smaller lakes always exhibited large
increases; with the exception of West Pond (Wollitz, 1962).

A final factor that probably influences the magnitude of
fish/benthos interactions in rotenone-poisoned lakes 1is trophic

state. Tuunainen (1970) claims that the effect of removing and
restocking fish on the benthic community is much greater in
oligotrophic lakes than in eutrophic lakes. As evidence, he

compared his oligotrophic Finnish lakes with those eutrophic ponds
poisoned by Lellak (1965): the magnitude of the benthic response to
fish stocking and changes in fish biomass were dramatic in the
nutrient-poor Finnish lakes, while in the eutrophic waters, the
bottom fauna restabilized after the initial increase. Li and Moyle
(1981) have confirmed that the impact of fish introductions is much
greater, and more unpredictable, in oligotrophic lakes than in
eutrophic ones.

Emmaline Lake, Colorado was one of the smallest lakes studied, and
is also a highly oligotrophic alpine lake: benthos increased most
dramatically in Emmaline Lake (~350%) following fish removal,
possibly illustrating the combined influence of lake size and
trophic state.

Apart from these quantitative changes in the benthic community,
only one other aspect of fish/benthos interactions in rotenoned
lakes has been studied: Walters and Vincent (1973) noted a shift
to larger-sized midge larvae in the absence of fish.
Unfortunately, their study did not run 1long enough following
restocking to determine 1f the situation reversed with fish
present.
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Effects on Stream Benthos - Although WDW very rarely uses rotenone
in running waters, brief mention should be made of the published
papers on rotenone’s effect on stream benthos. Bridges and Cope
(1965), Claffey and Ruck (1967), and Engstrom-Heg et al. (1978)
have all performed laboratory bioassays with rotenone on stream
insects. Rotenone’s short- and long-term effects on stream benthos
in the field were investigated by Dexter (1965), Swan (1965), Binns
(1967), Cook and Moore (1969) and Helfrich (1978).

In general, these studies demonstrated that rotenone has a far more
drastic initial impact on stream benthos than on lake benthos. And
while stream invertebrate communities do recover from rotenone, it
takes more time than in standing water. The three main reasons
for the increased sensitivity of stream benthos are:

1) On the whole, stream~dwelling insects themselves are far more
sensitive to rotenone than those that live in lakes (Helfrich,
1978; Engstrom-Heg et al., 1978). Considering rotenone’s

status as a respiratory poison, this stands to reason: most
stream invertebrates have ' very high dissolved oxygen
requirements (Engstrom-Heg et al., 1978), and are less
tolerant of a wide variety of pollutants than lake-dwelling
insects (Hynes, 1970).

2) Stream applications, to be effective in killing fish usually
require much higher rotenone concetrations than do lakes
(Binns, 1967; Engstrom-Heg et al., 1978).

3) Streams generally provide less of the organic debris and mud
that detoxify rotenone and protect lake-dwelling insects
(Lindgren, 1960).

Fish

Short-Term Effects - The median lethal concentrations (LC50) of
rotenone formulations for a variety of fish are displayed in Table
N. More data are available in the literature, but much of the
early work followed no standard procedure; dose-effect experiments
have been standardized as 24 to 96-hour LC50’s (Marking, 1975), and
only these data are reported in Table N.

The upper range of the 96-hour LC50’s for all species tested was
0.497 ppm. This is a far lighter dosage than the 1.23 ppm mean
dosage used in Washington state lakes. Furthermore, dosages of at
least 1 ppm and up to 5 ppm are repeatedly recommended for lake
treatments nationwide (Schnick, 1974; Spitler, 1970).
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Markings and Bill cited four reasons for the apparent dlscrepancy
between recommended field dosages and dosages known to be lethal in
the lab:

1) Laboratory results (LC50’s) indicate dosages that kill 50% of
the fish, whereas the ideal field dosage is one that kills
100% of the target fish.

2) Organisms, partlculate matter, and sunllght in natural waters
tend to detoxify rotenone faster than in laborartory aquaria.

3) Uniform concentrations are far more difficult to achieve in
the field, so that higher dosages are needed.

4) Individual fish of a species may be exceptionally resistant,
so that a higher dosage 1s needed.

Markings and Bill (1976) concluded, along with Burress (1975), that
field concentrations should be based on the results of on-site
toxicity test rather than on laboratory or field data. Laboratory
data can serve as guidelines in selecting field dosages (Gilderhus,
1972) .

Susceptibility of Different Fish Species - Laboratory tests can
also serve as indicators of the relative susceptibility of
different fish species. Figures 23 and 24 display the results of
the most thorough study on this subject (Markings and Bill, 1976).
Of the twenty species tested under standardized conditions,

goldfish (Cyprinus carpio) and black bullheads (Ictalurus melas) -

were the most resistant - 10 times as resistant as most other
species.

These results are in general agreement with earlier, less detailed
studies: Leonard (1939) stated that the least resistant species
included the common shiner (Notropis cornutus), golden shiner
(Notemigonus crysoleucas) , bluegill (Lepomis  macrochirus),
pumpkinseed (Lepomis gibbosus), and brook stickleback (Culaea
inconstans), while the mudminnow (Umbra spp.), and goldfish,
(Carassius auratus), were the most resistant; Burdlck et al. (19595)
placed the following fish in order of their increasing resistance:

brown trout (Salmo trutta), rock bass, (Ambloplites rupestris),

creek chub (Semotilus atromaculatus), smallmouth bass (Micropterus
dolomieui), common sucker (Catostomus commersoni), and brown
bullhead (Ictalurus nebulosus). Jenkins (1956) ranked the
following from least to most resistant: gizzard shad (Dorsoma
cepedianum), carp (Cyprinus carpio), largemouth bass (Mlcropterus

salmoides), redear sunfish (Lepomis microlophus), black crappie,
(Pomoxis nigromaculatus), bluegill, white crappie (Pomoxis
annularis), green sunfish (Lepomis cyanellus), warmouth (Lepomis

gulosus) and black bullhead (Ictalurus melas).
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Figure 23

96-hour median lethal concentration (LC50) of
Moxfish for several fish held under standardized
laboratory conditions. I. Vertical bars represent’
95% confidence intervals. Data from Marking and
Bills 1976. See Figure 2 for additional data.
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96-HOUR LCS0 (ppm Moxhish)
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Fiqure 24

96-hour median lethal concentration (LC50) of Moxfish for

several fish held under standardized laboratory conditions.
I[I. Vertical bars represent 95% confidence intervals. Data
from Marking and Bills 1976. See Fiqure 1 for goldfish and

black bullhead LCSN's.
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Effect on Fish Eggs - Table O displays the results of laboratory
toxicity tests on fish eggs. All researchers working with salmon
eggs found that they were more resistant to rotenone than fry or
fingerlings of the same species. Olson and Marking (1975) compared
fingerling brook trout, lake trout (Slavelinus namaycush), and
chinook salmon (Oncorhynchus tshawytscha) with eggs of those
species; they concluded that the eggs were more resistant.
Markings and Bill (1976) found that newly fertilized eggs of
rainbow trout were 47 to 106 times more resistant than rainbow

fingerlings to Noxfish. The actual degree depended on water
hardness. Garrison (1968) reported that salmon eggs were 10 times
as resistant to Pro-Noxfish than were salmon fry. He suggested

that salmonid embryos would survive a fish-killing dose of
rotenone. Leonard (1939) found that eyed brown trout eggs survived
a 0.5 ppm dosage of derris powder, but that the fry died as soon as
they broke the shell.

Leonard (1939) and Clemens and Martin (1953) reported that problem
species have repopulated in lakes where they have been completely
poisoned out, and where no illegal stocking or invasion from nearby
waters occurred. They suggested that resistant eggs which hatched
after detoxification could have been the reason. Some support for
this hypothesis comes from Markings et al. (1983), who found that
eyed carp eggs were about 50 times as resistant to rotenone as were
carp larvae based on LC50 values. Rainbow smelt (Osmerus mordax)
€ggs were about 10 times as resistant as the larval form. Hester
(1959b), reported that the LC50’s of both carp eggs and fathead
minnow eggs were very similar to those obtained with fingerlings of
the same species. Either his results were in error, or carp and
fathead minnow eggs behave differently than salmonid eggs when
exposed to rotenone.

Effect on Non-Target Native Fish - Fish native to Washington state
waters are seldom the target of rotenone treatments. It is
reasonable to assume that native non-game fish (such as sculpins ,
suckers, dace, chubs, squawfish and shiners), as well as residual
stocked trout, are killed along with target species in a rotenoned
lake. Of the nonsalmonid fish native to Washington, only suckers
have been tested for their tolerance to rotenone; Figure 24 shows
that they succumb to smaller dosages of rotenone than most target
species (e.g., perch, sunfish, catfish). '

Zilliox and Pfeiffer (1960) reported that native fish in Adirondack
Lakes - white suckers, brown bullheads, whitefish (Coregonus spp.),
and several minnows - were temporarily eliminated along with the
non-native target species, usually yellow perch (Perca flacescens).

Effectiveness of Treatment - In the past the most common way to
judge the effectiveness of a rotenone treatment was on the basis of
a "complete kill" of all target fish. Several more or less
practical definitions of a "complete kill" have been offered
(Clemens and Martin, 1953:; Lennon et al., 1970; 2Zilliox and
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Pfeiffer, 1956). The last authors gave the following commonly-
cited criteria for a complete kill: "Failure of observation,
angling and netting for two successive years following reclamation
to indicate any species of fish present in a reclaimed pond, except
stocked trout, would appear to be a reasonable indication of a
complete kill". The authors later excluded native species from
this definition, since they frequently reappear within two years
even in "successfully" treated lakes (Zilliox and Pfeiffer, 1960).

Judged by. the criteria of Zilliox and Pfeiffer (1956, 1960), WDW
Biologist Bob Pfeifer stated that is was unlikely that complete
kills were acheived in recent years in a number of Seattle-area
lakes (Pfeifer, 1985).

Clemens and Martin (1953) pointed out that the only way to be
entirely sure of a complete kill is to drain the lake or pond.
This has been done on occasion: Cumming et al. (1975) drained a
0.1 acre Arkansas pond following a 2 ppm Noxfish application and
found that a complete kill of channel catfish and grass carp had
indeed occurred. But Clemens and Martin (1953) drained two ponds
after rotenone treatment and found fish in both; one pond had been
judged a "complete kill" before draining. On six other ponds which
Clemens and Martin had initially termed "complete kills", intensive
seining revealed some target fish still present in at least five of
them.

In larger lakes, the possibility of ever exterminating 100% of the
target fish with rotenone is small, and is probably an unrealistic
goal (Klingbeil, 1975). Klingbeil notes that massive efforts to
kill the last 0.1% of a target population in Wisconsin are usually
followed immediately by illegal stocking of the same or different
problem species. '

Klingbeil (1975) and Zilliox and Pfeiffer (1960) have disregarded
the concept of a "complete kill'" altogether, offering another
criterion by which to judge the effectiveness of a lake poisoning:
the return of quality fishing. This would seem to be far more
viable measure for two reasons: ‘

1) the ultimate purpose of most treatments is to produce better
fishing, not necessarily to eliminate X number of target fish
(Prevost, 1960); and

2) gquantifying "better fishing" (in terms of catch-per-unit-
effort, CPUE, fingerling growth and survival, etc.) is far
more practical than determing a "complete kill". These data
are already collected on a yearly basis on virtually all
Washington state "trout-only" lakes. Cost-benefit analyses
can also be readily applied to these lakes.
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Biologists have long been interested in what proportion of the fish
poisoned in a lake eventually come to the surface, mostly out of a
desire to make population estimates more reliable, (Brown and Ball,
1943b; Carlander and Lewis, 1948; Krumholz, 1950b; Lambou and
Stern, 1957). It has been suggested that the decay of unrecovered
fish that did not surface, might produce nuisance algae blooms in
some lakes (Funk and Moore, 1984). There are five main factors
that influence the surfacing of dead fish in rotenoned lakes:

1) Water temperature . Parker (1970) made both laboratory and
field tests and found that in warm water, dead fish surfaced
much more quickly than in cold water. Bartoo (1977) and
Krumholz (1950b) also cited water temperature as a major
factor in surfacing rates of rotenone poisoned fish.

2) Water depth . Parker (1970) found that deep water slowed the
surfacing of dead warmwater fish. '

3) Fish species . Parker (1970) reported that dead bullheads
surface more slowly than centrachids (sunfish) and dead
minnows faster than either. The data of Kempinger and

Christenson (1978) indicate that a greater portion of dead
walleye come to the surface compared to other warmwater
species.

4) Fish size . Smaller (younger) fish surface at a much slower
rate than larger fish of the same species (Parker, 1970; Brown.
and Ball, 1943b; Kempinger and Christenson, 1978).

5) Presence of aquatic rooted plants . When fish have access to
extensive beds of underwater vegetation, they often become
tangled and fail to surface after they die (Parker, 1970,
Ball, 1945; Zook, 1978).

Parker (1970) found that the following factors, within the limits
indicated, did not affect surfacing rate: dissolved oxygen (3.8-
13.8 ppm); total alkalinity (40.0-140.0 ppm as CaCOz); pPH (7.7-
8.5), total hardness (110.00222.3 ppn), transparency (clear - 8
inches), and rotenone dosage (0.5-6.3 ppm 5% dust).

Table P displays the data from rotenoned lakes and ponds in which
mark-recapture experiments were made using various fish. In every
case except Ford Lake (Ball, 1945), the authors were certain of a
complete kill. Also, all authors felt that tagging mortality was
insignificant and did not bias the results.

Considering the importance of water temperature in the surfacing of
dead fish, it is unfortunate that no temperature data exist for
some of the test waters. Figure 25 shows the percentage of fish
surfacing within 24 hours of rotenone treatment on lakes and ponds
where temperature data were available. Although data from studies
involving different warmwater fish species, fish sizes, and lake
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Table P

mark-recapture experiments,

Percentage of dead f15h surfac1ng following rotenone treatment 1n

Depth

“Water % of Dead
Test water, Temp. Range Time to Fish That ,
location Species (°F) (Ft.) Surface Surfaced Reference
North Lake, Yellow perch 50°  1-35 24 hours 15.5% Bartoo 1977
Western - 96 hours 17.5%
Washington :
Laboratory & Bluegills 80° 24 hours 95- 100% Parker 1970
4 ponds, (& other 72° 48 hours . .
Ohio centrarchids) 63° 1-15 72 hours now
59°© 120 hours W
50° 32 days wom
40° 30 days . n
----- Largemouth 68°  --- 60 hours 96% Krumholz
Bass : 48 hours 91% 1950a
) 24 hours 62%
Shoofly Lake, Largemouth 65° 1-12 24 hours 46.6% Zook 1978
eastern bass '
Washington
Farm pond, Bluegill | 38%
[owa White crappie ' 14% Carlander
Largemouth bass --- === 120 hours 33% and
Black bullhead 80% Lewis 1948
Golden shiner 91%
Nebish Lake, Walleye 44.0%
Wisconsin Smallmouth bass 16.6%
Northern pike 17.0%
Yellow perch : 4.2% Kempinger
Rock bass 56° 1-45 24 hours 22.4%  and
Bluegill 24.1% Christenson
Pumpk inseed 23.0% 1978
Green sunfish 7.0%
Largemouth bass 25.0%
Mean (all 20.4%
species)
Ford Lake, Bluegill - 1-33 144 hours 59% Ball 1945
Michigan Brook trout -45%




Depth

Water % of Dead
Test water, Temp. Range Time to Fish That
location Species (°F)  (Ft.) Surface Surfaced ~ Reference
Farm pond, Green sunfish ——— 1-11 24 hours 70.1%
Indiana 48 hours 85.4%
72 hours 88.0% Krumholz
120 hours 90.4% 1950b
168 hours 90.8%
192 hours 91%
Farm pond, Largemouth ——- 1-11 48 hours 87.1% Krumholz
Indiana bass 1950b
garkley Lake, MostTy sunfish, --- -——- 7Z hours BY% Axon et afl.
Kentucky bluegill, 1979

largemouth bass

W
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charateristics have been grouped together, it is still clear that
in cold water, a much smaller percentage of dead fish surface than
in warm water. Bartoo (1977) found that after the initial 24
hours, few fish surfaced in the relatively cold waters of North
Lake, Washington; in the following three days, they were able to
recover an additional 2%.

The relationship between fish size and the percentage of dead fish
that float to the surface is well demonstrated by the data from
Nebish Lake graphed in Figure 26. Regardless of species, the
smaller fish showed a tendency to remain on the bottom.

Some investigators have stated that almost all dead fish can
eventually be recovered from a lake, since even fish on the bottom
will bloat over time and rise to the surface. Hoffman and Payette
(1956) report this occurring eight days after rotenone treatment of
a San Diego reservoir. This second harvest of bloated fish was
actually much greater than the initial collection of dead fish made
within five days of poisoning. Brown and Ball (1943a) had SCUBA
divers observe individual dead fish lying on the bottom of Third
Sister Lake, Michigan; a week after poiosoning, these fish were
still on the bottom and decaying.

On Washington lakes, the surface watér temperatures at the time of
treatment in the fall range from 44°-80° F, averaging 57°-58° F.
Based on this mean and Figure 25, we would expect that only about
30% of the dead fish could be recovered. The bulk of the dead fish
would never surface, eventually decaying in the lake.

Long Term Effects - Effect on Non-Target Native Fish - No
quantitative studies have been made of the long term effects of
rotenone poisoning on native fish. Zilliox and Pfeiffer (1960)

reported on 12 Adirondack lakes which were rotenoned to eliminate
yellow perch, an introduced species: in 1954, all these lakes were
judged "complete kills", yet within five years, at least half were
repopulated with brown bullheads, white suckers, and several minnow
species, all native fish. The author’s data indicated that the
native species had survived poisoning, rather than merely being
reintroduced.

It is reasonable to assume that native, nontarget populations
eventually recover in the same way that target fish do: some fish
survive either due to individual tolerance (Meyer, 1966; Tompkins,
1953) or, more likely, because a truly "complete kill" has not
occurred. Quantitative data on recovery are lacking in the
literature.

Complicating the situation is the fact that rotenone target species
such as goldfish have a disastrous impact not cnly on trout, but
on other native fish populations as well (Wydoski and Whitney,
1979; Gothschalk, 1966). The guestion of whether or not rotenone
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Figure Zb Relationship between fish size (age) and surfacing rate
for various species in Nebish Lake, Wisconsin. Roman
numerals indicate age group of fish. Surface temperature

was 56°F at the time of poisoning. Source: Kempinger
and Christenson 1976.



benefits native nongame fish in the long run (by eliminating
competitive exotic species) is open to speculation.

Effect on Growth and Survival of Planted Trout - Trout are only
restocked in a rotenoned lake after biocassays indicate that the
water is completely detoxified, so that rotenone has no direct
toxic effect on growth or survival. The indirect, long-term
effects of rotenone treatment are increased growth and survival of
fingerling trout; this occurs because predators and/or competitors
are eliminated, and is the goal of most treatments in Washington
state and natlonwide_(Lennon et al., 1970).

Some authors have cautioned fishery managers not to restocck trout
while =zooplankton and/or benthic populations are still reduced
following rotenone (Bennett, 1985; Kiser et al., 1963). Kiser and
his colleagues stated that Fern Lake, Washlngton was stocked by WDW
immediately after the lake detox1f1ed about five weeks before
zooplankton populations had recovered to prerotenone levels. They
noted that successful fingerling stocking depends on an abundance
of natural food, and that fish may have been stocked too 'soon
following the spring treatment. There was no followup research on
survival or growth. :

Almost 80% of Washington state treatments occur in the fall, and
trout are restocked the following spring. This far exceeds the
time generally required for =zooplankton and benthic animals to
recover to prerotenone levels. 1In the case of spring treatments,
there are two options: either a prestocking zooplankton sample, or
a post-stocking measurement of fingerling growth. The later
empirical approach seems more practical and more reliable.

Rotenone Tolerance in Fish - Repeated us of pesticides on crops has
led to the well-documented phenomenon of resistant insects that
- become harder to control. Vertebrates such as fish usually breed
too slowly for such resistant populations to develop (Fabacher and
Chambers, 1972), but they do occur: Vinson et al. (1963) and
Culley and Ferguson (1969) found mosquitofish (Gambusia affinis)
that had apparently acquired a tolerance to DDT and a wide variety
of other pesticides in a heavily-sprayed agricultural area in
Mississippi. Hubbs (1963) was the first to theorize that
undesirable fish might become tolerant to rotenone, requiring ever
more frequent poisonings. Two instances have been reported where
fish apparently acquired a tolerance to rotenone through exposure
to rotenone or other pesticides: Fabacher and Chambers (1972)
found that the insecticide-resistant mosquitofish from Mississippi
showed a 1.8-fold tolerance to rotenone over mosquitofish from
pesticide free waters. While rotenone was not one of the
insecticides used in the area, Fabacher and Chambers demonstrated
that heavy, repeated spraying of other organo-chlorine insecticides
in the area produced a '"cross-tolerance'" in these fish.
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Orciari (1979) demonstrated an acquired tolerance due to repeated
use of rotenone itself: Ball Pond, Connecticut was treated with
1.0 ppm synergized rotenone six time during a 17 year period to rid
the 90 acre lake of golden shiner (Notemigonus crysoleucas). They
always reappeared, and tolerance to the poison was suspected as at
least part of the problem. Paired biocassays showed that the Ball
Pond shiners were 4.0-7.1 times more tolerant than golden shiners
from six ponds that had never been rotenoned.

Klingbeil (1975) discussed a related problem following rotenone
treatment: any fish which remain in a lake that is not a "complete
kill" may take advantage of the sudden reduction in competition for
food and space, rapidly filling the ecological void left by the
poisoned fish. The original survivors may be individuals that have
a natural tolerance to rotenone . (Tompkins, 1953; Meyer, 1966;
Marking and Bill, 1976), indivdiuals that have an acquired
tolerance (Oriciari, 1979), fish of an especially rotenone-
resistant species, or simply individuals that found refuge from the
poison in thick weeds, springs, etc. (Kiser et al., 1963; Prevost,
1960). Whatever the reason for their survival, there 1is the
possibility that these fish may not only repopulate to former
levels, but become an even greater nuisance than before poisoning.
While this scenario differs in the strict sense from true acquired
tolerance, the net result from a practical standpoint would be the
same: more frequent and possibly higher-dosage treatments would be
requlred to maintain a fishery.

Hubbs (1963) hypothesized that such a situation could occur in
Texas waters, especially with partial rotenone treatments. Scholz
(1983) believed that goldfish populations in eastern Washington
lakes were increasing because rotenone treatments allowed surviving
goldfish to expand into newly-vacant ecological niches. Whether or
not this actually occurred is problematic, since there are no
reliable fish population estimates for these lakes, and since the
dates of first introduction are unknown. Even if such data were
available, continued illegal stocking would tend to confuse any
analysis unless there were some way to separate the descendants of
freshly stocked fish from those of actual rotenone survivors.

Nuisance-fish increases have been documented in at least two lakes
where rotenone treatments were unsuccessful: Jenkins (1956)
reported .that the carp population in Ardmore City Lake, Oklahoma
exploded after a partial treatment. The goldfish population in
California’s Big Bear Lake likewise exploded following two
unsuccessful treatments (Johnson, 1966; Hoover, CDF&G, pers.
comm.). Klingbeil (1975) felt that the same thing might happen in
Wisconsin lakes, and recommended restocking with gamefish as
quickly as possible after poisoning to avoid such a takeover. He
also suggested predator stocking.
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On a statewide basis empirical evidence from Washlngton s 50-year
history of fish pOlSOH use suggest that the above scenarics are not
yet a problem: in the lakes that have been poisoned most
frequently, the time between treatments has not decreased over the
years.

Amphibians and Reptiles

Table Q lists toxicity data for amphibians. No lakoratory data are
available for reptiles. These tests suggest that larval amphibians
such as tadpoles are far more susceptible to rotenone than
metamorphosed adults. This stands to reason when we consider
rotenone’s high toxicity to gill-breathing forms.

The young of many amphibian species have completely metamorphosed
and lost their gills by fall, when most rotenone treatment occurs.
Others metamorphose during the fall, so that at least some
individuals could be affected by rotenone treatment. In
Washington, this category includes the spotted frog (Rana
pretiosa), the red-legged frog (Rana aurora), the Northern leopard
frog (Rana pipiens), the long-toed salamander (Ambystoma
macrodactylum), and the roughskin newt (Taricha granulosa). Still
others overwinter with gills: the Pacific giant salamander
(Dicamptodon ensatus), the Cascades frog (Rana cascadae), and the
bullfrog (Rana catesbeiana). The tiger salamander (Ambystoma
tigrinum) never loses its gills, while the Northwsstern salamander
(Ambystoma gracile) is variable: some metamorphose in the fall,

some overwinter with gills, and some retain gills for their entire
life (Weschler, WDW, pers. comm). Larvae and gill-breathing adults
of the above species could potentially suffer from routine fall
rotenone treatments. Spring treatments could affect all species,
since young amphibians are always in the gilled stage during that
time of year.

Laboratory tests indicate that gill breathing amphibians have a
relatively high tolerance to rotenone. Chandler and Marking (1982)
reported that larval leopard frogs were 3-10 times more tolerant of
rotenone than most of the 21 fish species tested by Markings and
Bill (1976), and had about the same tolerance as the hardy
goldfish. They noted that these animals were more sensitive to
rotenone in the lab than in the natural environment, and concluded
that they would probably be safe during lake treatments.

Denis and Devlin (1968) found that rotenone inhibited cell
resplratlon and development in amphibian eggs. Lamy  and Melton
(1972) noted that rotenone produced unusual cleavage in leopard
frog embryos. - The laboratory procedures used in both these studies
make extrapolation to the lake environment impossible. Again,
however, frog and salamander eggs are not present in the fall when
most rotenone treatments occur.
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Actual field data involving amphibians and reptiles are scarce and
qualitative. When Brown and Ball (1943a) applied 0.5% ppm rotenone
dust to a Michigan- lake in early May, tadpoles were "greatly
affected". Three months later, however, tadpoles were "extremely
numerous'", and the authors attribute it to post-rotenone breeding
and the lack of predation by fish. High concentrations (~10 ppm)
of Noxfish applied to ponds in Florida made alligators visibly 111,
forcing them to leave the water (Fletcher, WDW pers. comm.) .

In: other field applications, Meehean (1942) notad that numerous
Salamanders (Pseudobranchus striatus) were killed by 0.5 ppm
derris in five Florida lakes. The same author reported that 1.0
ppm derris killed the soft-shelled turtle (Amyda ferox).

Both adult and larval amphibians, as well as reptiles, may be
indirectly affected by rotenone treatment. Most of Washington
state’s riparian herpetiles include fish and/or aquatic insects in
their diets (Hodge, 1983; Stebbins, 1966), though none depend

exclusively on these items. Aquatic insect reduction due to
rotenone is rarely more than 71% in studied waters, and full
recovery usually occurs within a month or two. Alternative food

sources can probably support these animals during post-rotenone
shortage of fish and benthos (State of California, 1983).

Birds
oral toxicity for birds is listed in Table R.

The chipping sparrow is the most susceptible of the birds tested,
with an LC50 of 113 mg pure rotenocne per kg body weight. A six
ounce chipping sparrow would require 19.2 mg pure rotenone, or 384
mg of the 5% fish-killing dust for a 1lethal dose. Similar
calculations based on Brooks’ (1961) work show that the lethal dose
for a 6 ounce white rock chicken would be 1.02 ml Noxfish.

There would be no direct toxic effect of rotenone on birds and
although no chronic, long-term toxicity studies have been performed
on birds, the quick breakdown of rotenone and infrequent treatment
of lakes and streams would decrease the likelihood of such effects.

As with mammals, only those birds which depend on fish or benthos
for food such as: bald eagles (Haliaeetus leucocephalus), ospreys
(Pandion haliaetus), loons (Gavia spp), kingfishers (Megaceryle
alcyon), rails, grebes, and diving ducks - notably mergansers,
buffleheads (Bucephala albeola), and goldeneyes (Bucephala spp) -
could be affected indirectly by rotenone treatment of a lake.
Except for the kingfisher, all these birds normally forage as
adults over many miles and would probably not be harmed by the
temporary 1loss in fish or benthic food following rotenone
(Leschner, WDW, pers. comm.; State of California, 1983).
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Ospreys leave the Pacific Northwest beginning in September,
returning in April, and thus would not be present during most
treatments.

Kingfishers are highly territorial, so that the temporary
disappearance of fish could force them off a lake and into
competition with birds on other waters (Weschler, WDW, pers.
comm.). Ducklings on a spring-rotenoned lake would be unable to
forage on other waters, and may suffer reduced growth as an
indirect result of rotenone treatment.

Mammals

Data on the acute toxicity of orally administered rotenone to

mammals are listed in Table S. Only oral LD50’s using agueous
solutions are shown, since these mirror the "real-life" situation.

Schnick (1974) also conducted studies involving IP, IV, and IM
injections of rotenone, as well as oral doses using unusual

solvents.

The lowest LD50 of pure rotenone found in the literature on mammals
is 55 mg/kg body weight for guinea pigs (Cutkomp, 1943b). To kill
a small mammal weighing approximately half a pound would therefore
require 12.5 mg pure rotenone, or 250 mg of the commonly used 5%
dust. The smallest mammalian LD50 of rotenone formulation found
in the literature is 170 mg/kg body weight of cube’ powder (4.7%
rotenone) reported by Haag and Taliaferro (1940) using male rats.

To produce subacute effects such as weight loss or liver damage
also requires very high dosages fed continuously in the diet for
many months. Rotenone is not likely to have a direct toxic effect
on mammals in either the short or the long run. The reasons for
the high mammalian tolerance to rotenone were discussed in the
section describing the History of Rotenone. The EPA (1981)
considers it safe to water livestock with rotenone-treated water.

Indirect effects might occur when rotenone disrupts the food supply
for small mammals that feed on fish or benthos. In Washington this
category includes mink (Mustela vison), river otter (Lutra
canadensis), and water shrew (Sorex palustris).

Mink feed primarily on small mammals, with fish a secondary food
source (Banfield, 1974). Additionally, they move frequently, all
dens being temporary (Whitaker, 1980). River otters rely almost
entirely on fish for food, and the temporary loss of prey following
rotenone treatment may disturb them. But otters forage widely,
sometimes travelling 50-60 miles during a year (Banfield, 1974),
and would may not be displaced permanently. Water shrews may be
indirectly affected by the temporary reduction in benthos
(Weschler, WDW, pers. comm.).
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Human Health

Paths of Human Exposure to Rotenone - Figure 27 shows the uses of
rotenone and how people may be exposed to it.

Direct contact with the dust used in fish control is a hazard faced
mostly by fish biologists or other persons directly involved in the
application. The ways in which the public could ke exposed to the
rotenone used in fish control are: " '

1) by eating fish killed with rotenone; or
2) by drinking water contaminated with rotenone.

Cohen et al. (1960) stated that the danger of ingesting rotenone by
eating fish from poisoned 1lakes was very slight, since no
significant amount would enter the fleshy part of the fish.

More recently, these residues have been quantified: ' following
exposure to 2 ppm Noxfish, dead channel catfish, largemouth bass,
bluegills, and redear sunfish contained from 0.045 to 0.101 ppm
pure rotenone in their muscle fillets. Black bullheads which
survived 1 ppm Noxfish for one hour contained 0.05 ppm pure
rotenone immediately following treatment, and less than 0.020 ppm
pure rotenone after 12 hours in fresh water (State of California,
1985) . Based on the maximum residue figure and an estimated lethal
dose of 18 g pure rotenone, researchers stated that a 130-pound
person would have to eat a minimum of 397 pounds of fish at once to
receive a lethal dose.

The California Department of Health Services suggested an
acceptable daily intake (ADI) for humans of 0.0004 mg pure
rotenone/kg body weight/day, applying a safety factor of 1,000 to
the 0.4 mg/kg/day no-observable-effect levels (NOEL) determined by
the Midwest Research Institute (1980). A 130-pound person would
have to eat daily about one-half pound of fish containing 0.100 ppm
pure rotenone to reach the ADI, not allowing for probable losses of
rotenone through natural degradation and cooking (State of
California, 1985). Canada allows a residue of 0.1 ppm pure
rotenone in food (Khera et al., 1982).

The original use of rotenone-bearing plants in South America was
the collection of fish for the table (Teixeira et al., 1984;
Moretti and Grenand, 1982).

The main path by which people may come into contact with rotenone
from fish applications is through drinking water (Gosa’lvez and
Di’az-Gil, 1978). Cohen et al. (1960) concluded that the use of
rotenone to kill fish in public reservoirs was consistent with the
objective of safe and potable water. Where natural processes did
not thoroughly detoxify rotenone by the time it reached the
treatment station, they suggested the use of activated carbon to
remove the residue.
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ROTENONE

AGRICULTURE | FISH CONTROL

FARMS, GARDENS LAKES, RESERVOIRS
/ ~ _PARASITE CONTROL
, Z ~

cats dogs
( | ~ CONSUMED
CONSUMED FRUIT, FISH
VEGETABLES WATER
__ DOMESTIC
USES

DIRECT CONTACT | s .
WITH DUST | DIRECT CONTACT
WITH DUST

I HUMANS =—

Figure Z* Paths of possible human exposure to rotenone. Source: Gosalvez
and Diaz-Gil 1978.
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Acute Oral Toxicity - There has never been a human death attributed
to rotenone (Gosselin et al., 1984; Schnick, 1974; Thienes and
Haley, 1972). The lethal oral dose for humans has been estimated
from laboratory test with¢other mammals, mostly rats, and these
estimates are shown in Table T. Lethal doses for pure rotenone
range from 0.1 g per kg of body weight to 1.4 g/kg.

Santi and Toth (1965) warned that, contrary to most current
literature, rotenone could be highly toxic to humans. Their
experiments gave oral LD50’s for rats that went as low as 0.049
g/kg, which is half of the smallest lethal dose listed in Table T.
Yet their experimental solvent was acetone, and Santi and Toth
admitted that to "render this (high) toxicity evident, it is
necessary to choose proper solvents (ethanol and acetone) . Y

Finally, while no record exists of a human fatality due to
rotenone, there are several anecdotal reports of deaths due to the
plants from which rotenone is extracted: Moretti and Grenand
(1982) mention the use of Lonchocarpus by natives in French Guiana
to commit suicide; Gimlette (1929) cites the use of "tuba root"
Derris elliptica in Malaya for abortions, ritual suicide, and even
attempted murder; Campbell (1916) describes a suicide in Singapore
due to oral ingestion of D. elliptica. None of these references
make mention of the dosages, and fresh derris root has a much
higher toxicity than the dried powdered root from which rotenone is
extracted (Gosselin et al., 1984).

Acute Respiratory Toxicity - Rotenone is more toxic when inhaled
than when eaten (Windholz, 1983; Ambrose and Haag, 1937), though no
estimates of the lethal respiratory dose for humans have been
published. Santi and Toth (1965) tested a spray-mist of pure
rotenone and ethanol on rats, and concluded that when inhaled "in
proper vehicles or in ‘association to other drugs, rotenone might
cause unpleasant surprises". The "proper vehicle'" they refer to
would be a solvent such as ethanol or acetone. It is therefore
highly unlikely that acute respiratory poisoning could occur in
routine fisheries work.

Symptoms of Acute Rotenone Poisoning - Symptoms of acute oral
rotenone poisoning are largely inferred from animal studies. Onset
of the symptoms occurs within minutes to 5-6 hours after first
coming in contact with the poison (Lehman, 1951). Poisoning
results in numbness of the orzl mucous membranes, nausea, vomiting,
gastric pains, and muscle tremors. Respiration is at first
stimulated, then depressed. Convulsions and coma are followed by
death. The immediate cause of death is ashpyxia from repiratory
arrest (Gosselin et al., 1984; Thienes and Haley, 1972; Windholz,

1983; Sax, 1984). Symptoms of acute respiratory poisoning are the

same except that there is also some lung irritation (Gosselin et
al., 1984).
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Although rotenone has the potential to be highly toxic to humans
when combined with certain solvents (Santi and Toth, 1965), there
are certain properties of rotencne used in fisheries applications
that reduce this potential:

1) the low percentage (1 to 5%) commonly used in commercial
prepartations (Gosselin et al., 1984);

2) it has an éxtremely low solubility in water (Santi and Toth,
1965) ;

3) it is unstable in nature, detoxifying quickly in both light
and air (Haley, 1978);

4) it is an irritant when eaten, causing prompt vomiting (Haag,
. 1931);
5) it is inefficiently absorped in the gastrointestinal tract
(Gosselin et al, 1984);
6) the human body contains an effective oxidizing enzyme system

(Schnick, 1974; Haag, 1931; Santi and Toth, 1965).

Subacute Toxicity - Direct Contact - WDW fisheries bioclogists
handling rotenone dust during the course of routine lake poisonings
usually report one or more of the following symptoms: a numb
sensation in the mouth and lips, a mild sore throat, mild headache,
eye irritation, and a runny nose (pers. comm.). Fisheries
biologists in California, exposed to rotenone dust more or less
continuously for periods up to three weeks developed all the above
symptoms as well as sores on mucous membranes, eczema-like rashes,
sloughing of the skin in some areas, severe week-long eye
inflammations, and loss of appetite and the ability to taste
(Pintler and Johnson, 1958).

Exposure to derris powder resulted in violent dermatitis of the
genital region, irritation of the tongue and lips, and nasal
passage inflammation (Racouchot, 1939). Both these studies
recommended the use of face masks or protective clothing to reduce
symptoms.

There has been no long-term study on the subacute effects of direct
contact with rotenone dusts or liquids. The U.S. Environmental
Protection Agency (1981) considers it safe to swim in water treated
with rotenone. Dawson (1991) concluded that based on low mammalian
toxicity and rapid rate of decomposition (especially at warmer
temperatures that might be appropriate for swimming), the margin of
safety is so great that water would be safe for swimming and other
racreational use immediately following treatment.
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Subacute Oral Toxicity - As with acute poisoning, the long-term
toxic effects of rotenone on man must be inferred from experiments
on other mammals. Table U presents the results of long- term oral
dosages of rotenone on rats, dogs, and hamsters.

As shown in Table U, the most commonly noted effects of long—term
rotenone feeding were:

1) Liver changes . Where noted, this usually involved a fatty
metamorphosis of the liver. the lowest dosage that ever
produce these changes was a continuous diet of food containing
130 ppm derris powder (9.6% rotenone) for 190 days. The same
authors found no liver changes in dogs fed three times that
amount for 240 <days. No investigators since 1942 have
reported these liver changes, although close histological
inspection of all internal organs was part of all the later
studies. :

2) Growth inhibition . Either a major or minor decrease in weight

i gain, when compare to control animals, was reported in 10 fo
the 13 studies. In some cases this may be a result of the
unpalatability of the rotenone formulation, but Haag (1931)
fed his dogs rotenone in capsule form and Freudenthal et al.
(1981) took care to make the hamster diet equally palatable
for both test and control animals. In both these studies
significant growth inhibition was reported.

3) Oother effects . Midwest Research Institute (1980) found that
dogs fed and 10 mg of pure rotenone per kg of body weight
developed gastrOLntestlnal problems. The high dose also
caused mild anemia and small but consistent decreases 1n blood
glucose, total lipids, and cholesterol

Studies have also involved pregnant mammals to determine if oral
doses of rotenone would affect the fetuses of newborns. Hazelton
Raltech, Inc. (1983; 1982; 1981) conducted three studies with
pregnant rats, and determined that rotenone neither killed fetuses
nor produced abnormal young when fed to the mothers on days 6
through 19 of gestation at doses ranging form 0.75 to 15 mg pure
rotenone/kg body weight/day. The 1983 study involved feedings of
up to 75 ppm pure rotenone tot two successive generations of rats
on a daily basis; there was no effect on reproductive performance
of either sex. Khera et al. (1982), in a 9-day study with pregnant
rats, found that daily oral doses of 5 and 10 mg pure rotenone/kg
body weight were responsible for a higher rate of nonpregnancies
and resorptions, while 2.5mg/kg had no effect on the mothers or the
young. Freudenthal et al. (1981) noted that a continuous diet of
500 ppm pure rotenone  fed to a pregnant hamster for three months
was toxic to the embryos and resulted in cannibalism of the young
by the mothers.
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Carcinogenicity - The results of a number of studies on the long-
term effects of rotenone dusts (between 0.6 and 9.6% pure rotenone)
were published from 1931 to 1942 (Haag, 1931; Ambrose and Haag,
1938; Haag and Taliaferro, 1940; Ambrose et al., 1942; Ambrose and
Haag, 1936). While their results varied (see Table V), no tumors
were observed by any of the researchers.

The first mention of tumors possibly caused by rotenone appeared in
Lehman, 1952. He reported an increased incidence of peculiar cell
masses - classified between hvperplasia and tumor - in the livers
of rats fed rotenone continuously. These growths appeared in the
rats fed between 2 and 10 ppm pure rotenocne in the diet, but not at
higher levels.

In 1959, another study by the U.S. Food and Drug Administration
concluded that there was an abnormal incidence of liver tumors in
rats fed 2, 5, and 10 ppm pure rotenone in the diet for two yvears.
These tumors did not appear at higher levels (unpublished internal
report, U.S. FDA, Division of Pharmacology, 1959; reported by
Gosalvez, 1983).

Studies since that time on the cancer-causing potential of long-
term exposure to rotenone are shown in Table V. All except two
studies used pure rotenone in the tests; Hansen et al. (1965) fed
cube’ powder with 5.80% rotenone, similar to the commercial dusts
used for fish control, and Brooks and Price (1961) fed Pro-Noxfish.
In addition to the fresh powder, these last authors also tested
Pro-Noxfish that had been completely detoxified, to see if the
residues left in the water hagd any long-term effects.

Gosalvez and Merchan (1973) published a study in which rats
injected with rotenone developed mammary tumors (Table V).
Although these tumors were benign, they were transplantable, and
showed an average doubling time of 2-3 months. The tumors were in
many ways morphologically similar to human breast cancer (Gosalvez
et al., 1977).

The same authors reported that these tumors could also be produced
by low-level oral doses of rotenone on a daily basis for 45 days.
They suggested a possible hormonal mechanism for the inducement of
the tumors caused by rotenone (Gosalvez et al, 1979), and warned
that rotenone could be '"reaching the human female in certain
countries" in amounts sufficient to cause mammary tumors, mostly by
way of garden vegetables and drinking water (Gosalvez and Diaz-Gil,
1978).

As a result of this research, the U.S.. EPA scheduled a
reevaluation of rotenone and placed it on the Rebuttal Presumption
Against Registration listing (RPAR) in 1976 (Anon, 1976). The
agency commissioned a three year study, the results of which are
shown in Table V (Freudenthal et al., 1981). The researchers
concluded that neither direct oral administration, inclusion in the
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diet, or IP injection of rotenone caused tumors. As a result, the
EPA dropped rotenone from its RPAR 1list in 1981 (Anon., 1981;
1983) .

Marking (1988) also performed studies on chronic oral toxicity in
rats, effects on reproduction in rats, and subchronic oral toxicity
in dogs and concluded from the results of these studies and those
in the literature that even high doses of rotenone do not cause
tumors or reproductive failure, nor adversely affect fetal
developnment.
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APPENDIX A

FORMS






PRE-REHABILITATION PLAN

I. PROPOSAL

A. Justification for Proposed Rehabilitation
1. Demonstrate declines in the catch, survival, and/or size
of trout fry (or other game fish).

2. Estimate number of recreational days lost due to poor
trout fry (or other game fish) survival.

3. Demonstrate declines in past waterfowl use (if
applicable).

4. For new waters, demonstrate the water’s potential to

produce a viable game fish fishery.

B. Physical Description of the Water Proposed for Rehabilitation
Provide the best map available with the following details:
1. Name of water (and county).

2. Location using township coordinates of proposed water.
3. Surface acres of water.
4. Depth range (and contours if available). If the water is

greater than 100 acres, a bathymetric map will be
produced if not available.
5. Volume of water.

6. Outlet statistics - Permanent, intermittent, dry.
7. Stream miles, stream flow.

8. Number of developed public access areas.

9. Land ownership (%) Public __ Private

10. Established resorts.

C. Proposed Management Actions
1. Target species.
Date of last rehabilitation.
. Proposed treatment date.
Estimated restocking date.
Species to restock.
. Number of catchables, fry to stock.
Proposed toxicant name, type (liquid or powder)

concentration, and amount required.
Method of application.

Size of crew and number and name of crew leaders needed.

N OO0 W

O ™

II. PURPOSE ‘
Detail the purpose of the rehabilitation and how this action
relates to the management plan for this water.

III. INTENDED OUTCOME\MEASURE OF SUCCESS
Estimate duration of beneficial effects and how this will
be measured.



Iv.

VI.

VII.

VIITI.

IX.

RESQURCE IMPACTS

1. Detail potential impacts to non-targeted resources, using
survey data of individual waters (including outlets),
information from non-game and waterfowl programs, and
documented levels of 1mpacts from published studies (use

- Bradbury for references) :

2. Detail potential impacts to human related uses of the
water or shoreline (i.e. irrigation, drinking water,
beach combing, temporary loss of fishing, etc.) Identify
the existence of water intakes.

3. List any endemic species, and/or species which are rare,
endangered, threatened or otherwise listed which may be
impacted by the proposed rehabilitation.

MITIGATING FOR ADVERSE IMPACTS
1. Describe how adverse impacts can be mitigated, or softened
(i.e. time of year, removal of dead fish from shoreline,

etc.) ;

2. Describe measures to protect downstream resources (list
detoxicant used if applicable).

3. Describe measures to protect endemic species, and/or

species which are rare, endangered, threatened and/or
otherwise listed which may be impacted by the proposed
rehabilitation.

4. Describe the safety precautions for pesticide applicators
which will prevent health hazards. : ,

5. Describe how the public will be discouraged from
collecting dead or dying fish.

RECREATIONAL IMPACT
Estimate increased angler success and number of recreational
days generated from the proposed rehabilitation.

ECONOMIC IMPACT

Given the above increased days in recreation, estimate impact
to local businesses, and costs and benefits to our program.
(Use Bradbury 1986 for reference).

RELATED MANAGEMENT ACTION ,

Detail management actions which are related to the proposed
rehabilitation (e.g. stocking sizes and levels of fish, pre-
rehab removal of selected fish, etc.) '

PUBLIC CONTACT .
Detail how and when the public was contacted and what was the
public’s general response to the proposal.



POST REHABILITATION FORM

1. Lake or Stream County
Section Township Range , WM
2. Lakes - surface acres Miles of inlet or outlet treated
3. Steams - miles treated Miles of tributaries treated
4. Maximum depth _ Average depth
5. Weight (1lbs) of water treated Toxicant used
6. Amount used : 1lbs.; % active ingredient
gals.; % active ingredient
7. Concentration applied” ppm, Date treated
8. Man hours expended in preparation, treatment and cleanup
Air time used
9. Conditions in the lake on date of treatment:
Depth in feet Temperature pH ©  Dissolved Oxygen
10. Species of fish eradicated in order of relative abundance:
1. 5.
2. 6.
3. 7.
4. 8
11. Possibility of a complete kill:
12. Detoxicant used
If any, report on effects recorded on downstream fishery.
13. Period of toxicity:
14.

Description of treatment and other comments:

Fishery Biologist ' Date
Region






APPENDIX B

HISTORY OF ROTENONE






HISTORY OF ROTENONE

Rotenone is a white crystalline ketone with the chemical formula
Cy3H,,0,. It is found in the roots of several tropical plants grown
in Maiaya, the East Indies, and Central and South America. For
centuries, natives in these areas have killed fish for the table by
poisoning lakes, ponds, and streams with rotenone preparations.

Besides rotenone itself, the so-called fish poiscn plants contain
other active ingredients called rotencids which are chemically
related, be generally less toxic.

Rotenone and its parent plants have hundreds of common names, but
the most widespread are derris, tuba (both names used to describe
Asian genus Derris, especially D. eliptica), timbo’, cube’, and
barbasco (the last three referring to the South American genus
Lonchocarpus, especially L. utilis, L. urucu, and L. nicou).

Rotenone is used primarily as an agricultural insecticide and in
household gardens. Its use as a fisheries management tool began in
1934, when Dr. Carl Hubbs attempted to poison carp and goldfish in
two small Michigan ponds. By 1970, all states except Hawaii had
used rotenone to kill fish, and most were using it routinely.

By far the most common aquatiec use of rotenone today is the
improvement of sport fishing via the elimination of other non-game
or competitor species. Some other aquatic applications in the U.S.
and Canada have been reported in the literature: Weier and Starr
(1950) improved waterfowl refuges by poisoning carp from pond where
‘they had uprooted the natural vegetation used by ducks for food and
shelter; rotenone has been used to sample fish populations in lakes
(Krumholz, 1950a), streams (Boccardy and Cooper, 1963), and coral
reefs (Smith, 1973); M’Gonigle and Smith (1938) used rotenone to
create a disease-free water source for a hatchery; and municipal
water supplies have been treated with rotenone to reduce turbidity
and algae caused by bottom-feeding fish (Hoffman and Payette, 1956;
Bonn and Holbert, 1961; Barry, 1967).

The United States which consumes about 15 million pounds of
rotenone per year, is supplied mostly by South America. Commercial
preparations used in agriculture and fisheries are made primarily
from the resins and dried and ground roots of Derris (and Asian
genus) and Lonchocarpus (a South American genus) which are

cultivated for that purpose. These dusts therefore contain not
only rotenone itself (usually about 5% of the total content) but
also wvarying amounts of the other rotenoids, as well as

biologically inert material.

Synergists are sometimes added. Pure rotenone for laboratory
purposes 1is extracted from the resins with solvents such as
chloroform and benzene.



Technical literature on the sources, chemistry, history and use of
rotenone abounds. The preceding is only a brief summary from the
following detailed sources: Haley, 1978; National Academy of
Science, 1983 (literature reviews of rotenone’s chemistry,
extraction, toxicology, biotransformation, and carcinogenicity):
Schnick, 1974 (exhaustive literature review on all fisheries uses);
Lennon, et al., 1970 Eschmeyer, 1975 (fish toxicants in general,
with numerous references to rotenone and its history in fisheries);
Gosa’lvez and Di’az-Gil, 1978 (scope of commercial use); Moretti
and Grenand, 1982; Teixeira, et al., 1984 (botany and use of fish
poison plants).

How Rotenone Works
Regardless of the organism, rotenone’s primary toxic action is at

the cellular level, where it blocks oxidative phosphorylation
(Fukami, et al., 1967; Lindahl and Oberg, 1961; Ernster, et al.,

1963; Figueras and Gosa’lvez, 1973). the specific site of action
is localized in the electron transport system, where it becomes
tightly bound (Oberg, 1961; Horgan, et al., 1968). Teeter, et al.

(1969) demonstrated that hlgh concentratlons of 'rotenone can
inhibit electron transfer in more than one region of the
respiratory chain. Both the lethal and numerous pharmacological
effects of rotenone can be ascribed to its 1nh1b1tory effect on
cellular metabolism (Santi and To’th, 1965).

Rotenone’s ablllty to inhibit cellular respiration has been well
documented in cells of mammals, fish and insects (e.g., Fukami, et
al., 1970), as well as amphibians (Denis and Devlln, 1968), and
even plants (Ikuma and Bonner, 1967). Why then 1is rotenone
extremely toxic to some life forms (fish and insects), relatively
nontoxic to others (mammals, including humans) and virtually
nonphytotoxic (being used extensively on crops and garden plants)?

Fukami, et al. (1969,1970) concluded that the selective toxicity of
rotenone between mammals, fish and insects was due to the
differences in the site of entry and/or ease of rotenone
detoxification rather than any cellular differences in the
oxidation chain of these animals. There are some minor variations,
however, in the mitochondria of different animals (and organs
within a species) that may also contribute to these dlfferences in
toxicity (Ilivicky:and Casida, 1969).

Although rotenone is toxic to isolated mammalian mitochondria,
mammals - including humans - are not highly susceptible to the
poison because they are protected by effective oxidizing enzyme
systems (Shnick, 1974; Haag, 1931; Santi and To’th, 1965) and
because of slow, inefficient gastrointestinal absorption (Gosselin,
et al., 1984). If rotenone is enabled to reach its site of action
through the use of solvents such as ethanol or acetone, however,
there 1is no real difference in the sensitivity to the poison
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between fishes and warm-blooded animals (Santi and To’th, 1965;
Schmidt and Weber, 1975). Also while absorption in mammals is very
inefficient, extremely high or continuous dosages may allow enough
rotenone to reach the site of action for toxic effects to appear.

The high susceptibility of fish to rotenone is mostly due to its
efficient entry through the gills (Schmidt and Weber, 1975; Oberg,
1964, 1967b).  Oberg (1967a) demonstrated that the specialized
structure of gills and lipid solubility favored the entrance of
rotenone from water - where it is virtually insoluble - into the
gill cell membrane. Once in the bloodstream rotenone is quickly
carried to vital orgars (such as the brain), where it inhibits
cellular respiration (Oberg, 1964). The fact that fish immersed in
rotenone solutions are protected if their gills are in contact with
pure water is further proof that the gills are the main entry site
in fish (Oberg, 1964). Orally administered rotenone doces have a
“toxic effect on fish, but not nearly so much as topically applied
rotenone (Hashimoto and Fukami, 1969).

Previously, rotenone was thought to kill fish by either destroying
the gill tissues (Danneel, 1933) or by constricting the tiny gill
capillaries (Hamilton, 1941). Microscopic examination of the gills
of both fish and aguatic insects revealed that death usually
occurred without any gill vasoconstriction or deterioration (Oberg,
1959; Lindahl and Oberg, 1961; Claffey and Ruck, 1967). However,
gill epithelium may be damaged by high concentration of rotenone as
a side effect, and when this occurs, the fish may die even when
cellular respiration is restored by placing the fish in fresh,
untreated water (Oberg, 1967b).

As in fish, the high susceptibility if insects to rotenone is
primarily due to easy entry via the gill-like tracheae and the
cuticle, although roténone can also enter effectively through the
mid-gut (Tischler, 1935; Fukami, et al., 1970).

In both aguatic insects and fish, rotenone tolerance tends to vary
inversely with oxygen requirements, as would be expected for a
poison that inhibits respiration (Engstrom-Heg, et al., 1978).

Rotenones toxic effects are reversible, depending on the amount
absorbed by the animal. Natural detoxification of sublethal
rotenone dosages in insects, fish and mammals is primarily via
oxidation by microsomal mixed function oxidase (mfo) enzymes
(Fukami, et al., 1969; Fabacher and Chambers, 1972; Ludke, et al.,
1972). In fact, certain chemicals (such as Sesamex) known to
inhibit these mfo enzymes are sometimes added to insecticidal
rotenone preparations as a synergist to increase dits toxicity. At
least in mammals, the inhibitory effect of rotenone on mitochondria
is overcome by adding vitamin K (menadione), which activates a
bypass of the rotenone-sensitive site (Santi and To’th, 1965;
Gosselin, et al., 1984).



In fish, these natural mechanisms are sometimes able to effectively
counter rotenone poisoning if the fish 1is removed to fresh,
untreated water. While Leonard (1939) and Brown and Ball (1943a)
were unable to revive rotenone-poisoned fish that had lost their
equilibrium, Smith (1940) found that brook trout recovered in a
fresh water bath, even when rotenone had affected their ability to
swim upright. Gilderhus (1972) performed laboratory tests
demonstrating that fish which had been floating on their sides in
lethal concentrations of rotenone for as long as four hours often
recovered if they were placed in fresh, untreated water. Oberg
(1967b) revived rotenone-poisoned cod in untreated water -and
suggested the metabolic pathways involved. '

In addition to fresh water baths, biologists have apparently
succeeded in reviving fish with at least two other techniques.
Bouck and Ball (1965) revived a variety of warmwater fish in
methylene blue solutions. They tried the stain after Oberg (1961)
showed that it reduced respiratory inhibition due to rotenone in
the mitochondria of rat livers and fish gills. In one of their
tests, Bouck and Ball were able to show that neither fresh water
alone nor very low.concentrations of methylene blue revived fish.
The technique was not effective on rainbow trout, and the authors
also cautioned that the stain was toxic to higher aquatic plants
and that it encouraged bacterial growth on fish.

Fletcher (1976) successfully revived rotenone-poisoned bass on four
Washington state lakes using a potassium permanganate dip. These
fish were then moved by hatchery trucks to other lakes where they
were released. Many of the fish that later recovered showed no
signs of 1life when initially placed in  the hatchery trucks.
Fletcher hypothesized that the 20-second permanganate dip worked by
neutralizing residual rotenone on the gills and body surface of the
fish. Hepworth and Mitchum (1966), who also revived fish with
permanganate dips and fresh water, concurred that the chemical

neutralized residual rotenone .on the gills. Fletcher also
suggested that the extremely cold, hyperoxygenated fresh water in
the hatchery trucks aided recovery. But since all fish in both

Flethcer’s and Hepworth and Mitchum’s tests received the dip, there
is no way to tell which factor was responsible for the recovery.
It is possible that the cold, oxygenated fresh water alone would
have revived the fish. Bouck arnd Ball (1965) stated that while
permanganate detoxified rotenone in water, it was of no value in
reviving fish..

Rotenone 1is unstable, degrading rapidly with- -exposure to light,
heat, oxygen and alkalinity (Lennon, et al., 1970; Schnick, 1974).
The degradation products were originally identified as
dehydrorotenone {which is non-toxic to fish) and water (Subba-Ra»n
and Pollard, 1951). Cheng, et al. (1972) later identified 29
degradation products, mainly rotenoids. ’ ”



In natural waters, a variety of other factors contributes to the
rate of degradation. These include the presence of organic debris,
turbidity, lake morphology, dilution by inlets and runoff, and the
dosage used (Shnick, 1974).

Post (1958) was the first to quantify the rate of rotenone
detoxification in water. He concluded that water temperature was
the most significant factor in the breakdown of rotenone; total
dissolved solids, pH, alkalinity, dissolved oxygen, and various
other cations and anions did not change the rate of breakdown to
any great extent, and were not useful as predictive tools. He
derived two empirical equations based on temperature for
determining the time to detoxification.

More recent field and laboratory research has shown deviations from
Post’s predictive equations; these turned out to be related to the
amount of sunlight reaching the toxic water. As noted above,
rotenone 1is photochemically unstable, degrading rapidly in
sunlight, and this reaction is accelerated at higher temperatures.
Rotenone was shown to detoxify quickly in shallow warm lakes and
"slowly in deep or ice-covered lakes (Meyer, 1966; Engstrom-Heg and
Colesante, 1979). The darker waters of the hypoliminion also
detoxify more slowly than the well-lit epilimnetic water in a given
lake (Engstrom-Heg and Colesante, 1979).

With these additional factors in mind Engstrom-Heg and Colesante
(1979) developed the most complete set of equations for predicting
rotenone breakdown in a wide variety of lakes and ponds. Their
results in epilimnetic waters coincided closely with Post’s (1958)
earlier findings, and two of their predictive equations for use in
clear, shallow, unstratified ponds are simple modifications of
Post’s formulas. But they added that the reduced sunlight in the
hypolimnetic waters played an important role in the slow breakdown
of rotenone in other lakes, and they developed three additional
equations that take this into account. These equations are
practical for field use, requiring only standard limnological data
that area already available for most lakes. Engstrom-Heg and
Colesante’s detoxification rates coincided very closely with the
results of Markings and Bills (1976), who arrived at their rate
constants using a totally different approach.

While toxic periods vary greatly depending on the factors mentioned
above, most lakes treated with rotenone are completely detoxified
within five weeks of treatment (Shnick, 1974). Lakes in Washington
state are usually non-toxic to fish about four to five weeks after
treatment.

It is possible to accelerate the natural breakdown of rotenone in
water by using certain oxidizing chemicals such as chlorine or
potassium permanganate (Dawson, 1975). Considering the high rate
of natural rotenone breakdown and the quantity of water involved,



these chemicals have little practical value in lakes. No 1lake
detoxification with chemicals has been recorded in the literature
(Lennon, et al., 1970).

Potassium permanganate is sometimes used, however, to detoxify
outlet streams that flow from treated lakes (Engstrom-Heg, 1972).
Pfeifer (1985) describes its use in detail and cites two case
histories in western Washington. Both chlorine and activiated
carbon have been used to detoxify and deodorize treated lake water
as it entered municipal water supplies (Cohen, et al., 1960; 196la;
1961b) .

Commercial fish-~killing preparations of rotenone fall into three
basic categories (Schnick. 1974):

1) 5% powder;
2) 5% emulsifiable concentrate; _
3) 2.5% synergized emulsifiable concentrate.

Emulsifiable concentrates were developed to make application easier

and to aid in dispersing the product (Meyer, 1966). Synergists
(usually organic solvents such as sulfoxide) were later added to
some formulations. These synergists aid absorption of the poison

so that a 2.5% synergized mixture can be as effective as the more
costly mixtures containing 5.0% rotenone (Price and Calsetta,
1957). Marking and Bills (1976) made extensive laboratory tests
and found that the 25% synergized formulation Pro-Noxfish somewhat
more toxic than a 5.0% nonsynergized formulation (Noxflsh) to
rainbow trout. the synergist sulfoxide, the emulsifying agents,
and the solvents used in these preparations have been tested and
found innocuous themselves (Penick and Co., 1959).

Bassett (1956) tested to see 1f there were significant toxicity
differences between 2.5% preparations (Pro-Noxfish and Chem-Fish
Special) and a 5% preparation (Chem-Fish); he found that in terms
of toxicity, they were basically the same. Shannon (1969) tested
nine commercial formulations ranging from 2.5% to 7.5% rotenone
content. His laboratory bioassays with sunfish showed little
variation in the amounts of formulation needed to produce a 24-hour
LC50; he concluded that cost, mixing ability, and ease of handling

should therefore determine the formulation used. Marking and
Bills’ (1976) laboratory tests showed no significant difference in
toxicity between Noxfish and 5% rotenone powder ' (Commerc1al

preparations mentioned by trade name are shown in Table B.)

Although there are some conflicting reports, most investigators
reported that rotenone was more toxic at hlgh than at low
temperatures, in acid than in alkaline waters, and in soft than in
hard water. Many of these were field studies, however, where a
great many other unmeasured variables could have affected the
results. Furthermore, efficacy in many of the early laboratory and



caged—-organism studies was based on survival time of the test
organism rather than on concentration of the toxicant (Marking and
Bills, 1976).

In the most recent, extensive and statistically thorough research
on this topic, Marking and Bills (1976) found only slight changes
in the toxicity of rotenone at differing temperature (44-72 F), pH
(6.5-9.5), and water hardness (10-300 mg/l CaCO). These test were
performed under standardized laboratory conditions using rainbow
trout, channel catfish, and bluegills.

Burdick, et al. (1955) also concluded from bioassays that pPH’s
between 6.28 and 8.10 made no difference in 'the toxicity of
rotenone; they found, however, that toxicity increased as
temperature rose. These conflicting reports on the effect of
temperature may be due to the fact that rotenone degrades more
rapidly in warm water than in cold.

In the lake environment, there are a number of other variables that
act to either increase or decrease the effective toxicity of
rotenones. Turbidity, soft, mucky bottom areas, weed beds, and
organic sediments all appear to decrease the killing power of
rotenone. The presence of a thermocline may prevent rotenone from
reaching all areas of a lake, thus reducing efficiency. Underwater
springs and surface outlets sometimes provide refuge for fish and
invertebrates.
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ADI

anoxic
CPUE

cube’
DDT
derris

eutrophic
hypolimnion

IP

LC50

LD50

macrophytes

mfo
MSY

NOEL

GLOSSARY

Acceptable Daily Intake of a material which should
protect human health. Given as a mg of material
per kg of body weight per day.

deprived of oxygen
Catch per unit effort

Common name for ground, dried roots (especially of
Lonchocarpus sp.) containing rotenone.

an insecticide, dichlorodiphenyltrichloroethane,

(ClC,H,) ,CHCCL,

Common name for ground, dried roots especially of
Derris elliptica) containing rotenocne.

designating or of a lake, pond, etc. rich in plant
nutrient minerals and organisms but often deficient

~.in oxygen in midsummer.

the lower most, noncirculating layer of cold water
in a thermally stratified lake, usually deficient
in oxygen.

intraperitoneal

median lethal concentration; the concentration of a
toxin in water that kills 50% of the test animals
in the water within a specified time (usually 24,
48, or 96 hours). Usually expressed in ppm.

median lethal dosage; the dosage of a toxin that
when fed or injected kills 50% of the test animals.
Usually expressed as mg of toxin per kg of the test
animal’s body weight.

plant forms, individuals of which can be observed
with the unaided eye.

mixed function oxidase
maximum sustainable yield

No Observable Effect Level for a material exposed
to test organisms.

1



oligotrophic

ppm

RPAR

SNARL

designating or of a lake, pond etc. poor in plant
nutrient minerals and organisms and rich in oxygen
at all depths. :

parts per million, usually by weight. 1 ppm equals
1 mg/l.

Rebuttal Presumption Against Registration list for
protests against chemicals that the us
Environmental Protection Agency has registered and
labeled for use. :

Suggested No Adverse Response Level.
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